
Modelling, Estimation and Identification
of Humanoid Robots Dynamics

Silvio Traversaro

ISTITUTO ITALIANO 

DI TECNOLOGIA 

D
IC

Supervisor: Dott. Francesco Nori

Fondazione Istituto Italiano di Tecnologia
Genova, Italia

2017





Abstract

During the last fifty years, the scientific community has dealt with the prob-
lem of designing humanoid robots, with the goal of creating artificial
machines flexible enough to master any task performed by a human. A
prerequisite for such generic machines would be the ability to control the
forces that robots exchange with the environment, in addition to their own
motion. These requirements imply that any controller of a humanoid robot
requires an implicit or explicit model for the robot’s dynamics, i.e. the
laws describing the relation between the robot motion and the forces applied
on itself, being either the external forces that the robot exchange with the
environment or the forces provided by its own motors. Additionally, any
time-variant quantity present in these models need to be perceived by the
humanoid robot. If a quantity is not directly measured by a sensor, it needs
to be estimated using the available measurements of different quantities
and the dynamical models that relate them. Both the dynamics models and
the sensor models are typically not perfectly known, and need to be identi-
fied from measured data and using a set of a-priori hypothesis. This thesis
focuses on addressing the problems of modelling, estimation and identifica-
tion of humanoid robots, focusing in particular to the specific characteristics
and sensor set of the iCub humanoid robot.
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Chapter 1

Introduction

1.1 iCub Humanoid Robot

The main robotic experimental platform used in this thesis is the iCub robot,
developed by the iCub Facility at the Italian Institute of Technology. It is
a child-sized humanoid robot originally developed by the RobotCub Euro-
pean Project for research in embodied cognition [Sandini et al., 2004]. Since
its initial release in 2006, the iCub has been continuously updated with
improvements and new features. iCub’s copies it have been distributed to
more then 30 partners institution in Europe, Asia and United States. As
the improvements are continuously released and integrated into the differ-
ent iCub’s, all the copies of iCub have different features, depending on their
release date, the maintenance’s updates performed during the years and
specific customization of each iCub. In the following we discuss the charac-
teristic relevant to this thesis, that apply to the latest “standard” version
of iCub, informally referenced hereafter as iCub 2.5, as of the beginning of
2017.

The iCub is a 53 degrees-of-freedom (DOF) humanoid robot. The DOFs
are distributed as in the following: 6 for each leg, 3 for the torso, 6 for the
head and eyes, 7 for each arm and 9 for each hand. One additional servo
motor is used to open and close the eye-lids. In this thesis we consider only
a subset of 32 DOFs (legs, torso, arms and neck) that are actuated with
Brushless DC electric motor (BLDC) with an Harmonic Drive transmission,
making them suitable for joint torque control. More details on the actuation
and mechanics of the iCub 2.5 can be found in [Parmiggiani et al., 2012].
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Fig. 1.1 The iCub version 2.5, balancing itself on one foot thanks to contact
forces control.

One of the research goals of the iCub project is to endow humanoids
with advanced physical interaction capabilities. This is motivated by the
idea that future robots will be required to physically interact with the en-
vironment and, in the long run, with humans. A key requirement for this
interaction control is the capability to measure and control the forces that a
robot is exchanging with its environment, i.e. contact forces control. While
in traditional industrial applications this is achieved by by placing a six-
axis force-torque sensor between the robot and the environment, this is not
feasible in humanoid robotics, in which the contact location is typically not
known a-priori. To overcome this limitations, a unique set of dynamics-
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related sensors have been added during the years to the iCub.

Fig. 1.2 Distribution of the six embedded six-axis force-torque sensors
(green) available in iCub 2.5 .

The main force sensors available on the iCub are six internal six-axis
force-torque sensors. Four of them are mounted at the base of each limb
while two of them are mounted in feet right below the ankles. The locations
of these sensors are highlighted in Figure 1.2. The placement of these sensors
was dictated by practical reasons, as the hand structure would have not been
not able to support a force-torque sensor mounted in it, but also to enable
estimation of internal joint torques and external force-torque, as described
in [Fumagalli et al., 2010b] for a single limb and in Chapter 4 of this thesis
for the whole-body case.

While internal force-torque sensors are able to measure force-torque due

3



Fig. 1.3 Distribution of the tactile sensors on iCub 2.5.

to a combination of internal dynamics and of contact wrenches, they are in
general unable to measure the location of a contact force, or its distribution
over a contact surface. For addressing these concerns the iCub body has
been covered with a distributed set of capacitive elements acting as tactile
sensors [Maiolino et al., 2013]. The entire sensor network acts as an “artifi-
cial skin”, constituted by a sandwich of different flexible fabrics mounted on
top of a flexible Printed Circuit Board (PCB), so that the entire structure
can be conformed on surfaces of different curvatures. The majority of iCub
2.5 external surface has been covered by this “skin”, as shown by Figure 1.3.
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Fig. 1.4 Distribution of the inertial sensors i.e. gyroscopes (left) and ac-
celerometers (right) in iCub 2.5 .

To read the distributed tactile sensors, the iCub has been equipped with
distributed network of dedicated electronic boards. Remarkably, this boards
are equipped with a 3 Degree-of-Freedom (DOFs) accelerometer. Similarly,
several motor control boards are distributed in the robot structure, and each
motor control board is equipped with both a 3 DOFs accelerometer and a 3
DOFs gyroscops. Furthermore, an full-fledged Inertial Measurement Unit,
equipped with a 3 DOFs magnetometer, accelerometer and gyroscope is
mounted on the head of the robot. These arrangements, shown in Figure 1.4
provides the iCub with a vast amount of distributed inertial sensing, that
has been exploited for fine calibration [Guedelha et al., 2016].

These sensors form the basis for the use of the estimation and identifi-
cation algorithms presented in the thesis, that are essential technologies to
enable interaction force control. To describe the presented algorithms, we
need to provide a solid background in multibody dynamics, that will be also
presented in the thesis.
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1.2 Thesis Organization

The following is a brief summary of the organization of the thesis. At the
beginning of each chapter a discussion of the contribution with respect to
the state of art of the specific chapter is given.

1.2.1 Modelling

This thesis includes in the Chapters 2, 3 a self-contained derivation of the
multi body dynamics and in Appendix A its connection with Lie Groups
theory. Particular focus is placed on the role of the base link in free-floating
dynamics, and in the different representation of base-related quantities that
are used in literature. This chapters form the theoretical basis for the rest
of the thesis, devoted to estimation and identification of humanoid robot
dynamics.

1.2.2 Estimation

Chapter 4 describes the algorithms used for the estimation of external forces
and internal joint torques using internal six-axis force-torque sensors, dis-
tributed inertial sensing and a distributed tactile system, that are the set
of sensors available on the iCub robot, as discussed in Section 1.1. This
part is mainly a generalization of already existing results [Fumagalli et al.,
2010c, Ivaldi et al., 2011, Fumagalli et al., 2012, Del Prete et al., 2012] to
the whole-body case.

1.2.3 Identification

The main contribution of Chapter 5 are two new algorithms for calibration
of six-axis force-torque sensors that can be performed in situ, i.e., without
removing the sensor from the hosting system. These algorithms exploit the
specific geometric of the gravity force-torque when expressed in the sensor
frame.

Chapter 6 introduces the concept of the identification of the inertial
parameters of a single rigid body. The main contribution of this chapter
is the definition of a new condition, the fully physical consistency for a set
of inertial parameters to determine if they can be generated by a physical
rigid body. The proposed condition ensure both the positive definiteness
and the triangular inequality of 3D inertia matrices as opposed to existing
techniques in which the triangular inequality constraint is ignored.
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Chapter 7 generalize the identification problem to the case of a system
compose by multiple rigid bodies, with particualr attention of the relations
between the identifiability subspaces of the regressor associated with the
different set of sensors. The main contribution of this chapter is the adap-
tation of the existing techniques for inertial parameters identification on
humanoids to the specific set of sensors that is available on the iCub robot.
While most existing techniques [Ayusawa et al., 2014, Ogawa et al., 2014,
Mistry et al., 2009] assume that either the contact forces or the joint torques
measurement are available, in the iCub we only have a distributed tacticle
system and a internal six-axis force-torque sensors. We propose a way of
using internal six-axis force-torque sensor for estimation, and furthermore
we demonstrate that the set of inertial parameters that are identifiable from
the internal six-axis force-torque sensors are a superset of the one that we
need to run the estimation algorithms presented in Chapter 4.

1.3 Technological Outcome

The modelling formalism and the estimation algorithms presented in this
thesis enabled the development of an whole-body controller on the iCub
robot, that has been used to showcase highly dynamical balancing [Pucci
et al., 2016b] and has even permitted to the iCub to take part to an Italian
Talent show as a participant [Talent, 2016]. The interested reader is referred
to [Nori et al., 2015] for an integration paper describing the overall whole-
body control architecture.

Furthermore, all the algorithms described in this thesis have been imple-
mented in the open source C++ library iDynTree [Traversaro et al., 2017].
The iDynTree is complete with documentation for installing it and using it.
Furthermore, the library is equipped with bindings with MATLAB, Octave,
Python, Lua and Java to enable its use in a wide set of platforms, fulfilling
all the disparate needs that may arise in a research environment.
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Chapter 2

Rigid Body

In this chapter we introduce the dynamics of a rigid body. Existing (robot-
related) literature on rigid body dynamics can be divided into two main
categories. The first category contains work that use almost exclusively spa-
tial 6D velocities as defined in Geometrical Mechanics such as [Featherstone,
2008, Featherstone and Orin, 2016, Jain, 2010, Murray et al., 1994]. The sec-
ond category include work that use the 6D velocities that are a combination
of the “classical” linear velocity and the angular velocity of the body [Spong
et al., 2006, Siciliano et al., 2008, Chiaverini et al., 2016]. The connec-
tion between these two representations is well known to robotics researcher
[Murray et al., 1994, Bruyninckx and De Schutter, 1996, Englsberger, 2016],
but it was never explored in depth. Furthermore, it is a common source of
confusion for newcomers to the field. In this chapter we treat all the com-
monly used representation of velocity, explaining the respective advantages
and limitations, and the effect of choosing one representation or another on
dynamics.

Furthermor, while most robotics textbooks on dynamics introduce the
Newton-Euler equations as a given, we prefer to derive them from the basic
principle of Lagrangian Dynamics. This methodology is consistent with
what is typically done for fixed-based robots [Siciliano et al., 2008, Spong
et al., 2006], and is useful to get an insight on the structure of Newton-
Euler equations and why they are different from the classical Euler-Lagrange
equations that describe the evolution of a system whose configuration space
is a vector space.

The goal of this chapter is two-folded: while introducing the kinematics
and dynamics of the rigid body, we also introduce a notation for describing
kinematics and dynamics 6D quantities, as well as their coordinate trans-
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formations.
The goal of this newly introduced notation is to be compact, not am-

biguous, and in harmony with Lie Group formalism. The notation borrows
from the well known notation introduced in [Featherstone, 2008], which is
also used, with slight modifications, in [Featherstone and Orin, 2016]. This
notation is, unfortunately, not fully in accordance with Lie group formal-
ism used in, e.g., [Murray et al., 1994, Park et al., 1995, Kim, 2012], that is,
however, less compact than [Featherstone, 2008], leading to long expressions
when several rigid bodies are present. This chapter presents the frames nota-
tion, while the connection between the notation and the Lie group formalism
is presented in Appendix A.

2.1 Overview of the notation

Remark 2.1. Every chapter will begin with an overview of the notation used
in that Chapter. Frequently, the notation used in a given chapter will be a
simplified version of the full notation introduced in this chapter, to avoid
overloading the text with an extremly complex notation. In some cases, the
simplified notation can only be introduced for a single section. In that case,
an overview of the simplified notation used in that section will open the
section.
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Notation used through the thesis
A,B coordinate frames
p an arbitrary point
oB origin of B
[A] orientation frame associated to A
B[A] frame with origin oB and orientation [A]
Ap coordinates of p w.r.t. to A
AoB coordinates of oB w.r.t. to A
AHB homogeneous transformation from B to A
AXB velocity transformation from B to A
CvA,B 6D velocity expressing the velocity of B wrt

to A written in C
Cv∧A,B 4× 4 matrix representation of CvA,B
CvA,B× 6×6 matrix representation of the 6D velocity

cross product
CvA,B×̄∗ 6 × 6 matrix representation of the dual cross

product

Bf coordinates of the 6D force f w.r.t. B

AX
B 6D force transformation from B to A〈

Bf,
BvA,B

〉
pairing between 6D force and velocity

BML 6× 6 inertia tensor of link (=rigid body) L
expressed with respect to frame B


2.2 Math preliminaries

The following notation is used throughout the thesis.

� The set of real numbers is denoted by R. Let u and v be two n-
dimensional column vectors of real numbers, i.e. u, v ∈ Rn, then their
inner product is denoted as uT v, with “T” the transpose operator.

� The identity matrix of dimension n is denoted In ∈ Rn×n; the zero
column vector of dimension n is denoted 0n ∈ Rn; the zero matrix of
dimension n×m is denoted 0n×m ∈ Rn×m.

� The set SO(3) is the set of R3×3 orthogonal matrices with determinant
equal to one, namely

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1 }. (2.1)
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� The set so(3), read little so(3), is the set of 3 × 3 skew-symmetric
matrices,

so(3) := {S ∈ R3×3 | ST = −S }. (2.2)

� The set SE(3) is defined as

SE(3) :=
{[ R p

01×3 1

]
∈ R4×4 | R ∈ SO(3), p ∈ R3

}
. (2.3)

� The set se(3) is defined as

se(3) :=
{[ Ω v

01×3 0

]
∈ R4×4 | Ω ∈ so(3), v ∈ R3

}
. (2.4)

� Given the vector w = (x; y; z) ∈ R3, we define w∧ (read w hat) as the
3× 3 skew-symmetric matrix

w∧ =

xy
z

∧

:=

 0 −z y
z 0 −x

−y x 0

 ∈ so(3). (2.5)

Given the skew-symmetric matrix W = w∧, we define W∨ ∈ R3 (read
W vee) as

W∨ =

 0 −z y
z 0 −x

−y x 0

∨

:=

xy
z

 ∈ R3. (2.6)

Clearly, the vee operator is the inverse of the hat operator.

� Given a vector v = (v;ω) ∈ R6, v and ω ∈ R3, we define

v∧ =

[
v
ω

]∧
:=

[
ω∧ v
01×3 0

]
∈ se(3). (2.7)

� Similarly to what was done for vectors in R3 few lines above, we define
the vee operator as the inverse of the hat operator such that[

ω∧ v
01×3 0

]∨
:=

[
v
ω

]
= v ∈ R6. (2.8)

� Given A ∈ Rn×m and B ∈ Rp×q, we denote with ⊗ the Kronecker
product A⊗B ∈ Rnp×mq.
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� Given X ∈ Rm×p, vec(X) ∈ Rnm denotes the column vector obtained
by stacking the columns of the matrix X. In view of the definition of
vec(·), it follows that

vec(AXB) =
(
B⊤ ⊗A

)
vec(X). (2.9)

2.3 Frame kinematics

2.3.1 Rigid Body Assumption

A rigid body is an idealization of a physical object, in which the deformation
internal to the object are assumed to be negligible, i.e. the object is assumed
to be nondeformable. While in the real physical world every object that is
interacting with the external world is subject to a certain degree of deforma-
tion, in the study of certain mechanism such a humanoid robots, the rigid
body assumption is useful as it permits to develop model that capture the
dominant dynamics of the analyzed system, disregarding any aspect related
to the internal compression and decompression of the object composing the
system.

The kinematics of a rigid body are typically described by attaching to
the rigid body a frame, defined as the combination of a point (called origin)
and an orientation frame in the 3D space [De Laet et al., 2013, Spong et al.,
2006]. For this reason in this section we will describe the kinematics of
frames, and this will serve also for describing the kinematics of any rigid
body.

2.3.2 Points and coordinate frames

We typically employ a capital letter to indicate a frame. Given a frame
A, we will indicate with oA its origin and with [A] its orientation frame.
Formally, we write this as A = (oA, [A]).

Frames can be time varying. They can be used, e.g., to describe the
position and orientation in space of a rigid body as time evolves. They are
also used to expressed a coordinate system for a 6D force exchanged by two
bodies or used to define a coordinate system to describe a robot task (like
a frame attached to the center of mass and oriented as the inertial frame).

Newton’s mechanics defines the set of Inertial frames. In this document,
we usually indicate one inertial frame as with A (the Absolute frame).
As common practice, for robots operating near the Earth surface, we will
assume the frame A to be fixed to the world’s surface, disregarding non-
inertial effects due to the Earth’s motion.
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Coordinate vector of a point

Given a point p, its coordinates with respect to a frame A = (oA, [A]) are
collected in the coordinate vector Ap. The coordinate vector Ap represents
the coordinates of the 3D geometric vector

→
r oA,p connecting the origin of

frame A with the point p, pointing towards p, expressed in the orientation
frame [A], that is

Ap :=


→
r oA,p ·

→
xA

→
r oA,p ·

→
yA

→
r oA,p ·

→
z A

 ∈ R3, (2.10)

with · denoting the scalar product between two vectors and
→
xA,

→
yA,

→
z A,

the unit vectors defining the orientation frame [A].

Change of orientation frame

Given two frames A and B, we will employ the notation

ARB ∈ SO(3) (2.11)

to denote the coordinate transformation from frame B to frame A. The
coordinate transformation ARB only depends on the relative orientation
between the orientation frames [A] and [B], irrespectively of the position of
the origins oA and oB.

Homogeneous transformation

To describe the position and orientation of a frame B with respect to another
frame A, we employ the 4× 4 homogeneous matrix

AHB :=

[
ARB

AoB
01×3 1

]
. (2.12)

Given a point p, the homogeneous transformation matrix AHB can be also
used to map the coordinate vector Ap to Bp as follows. Let Ap̄ and B p̄
denote the homogenous representation of Ap and Bp, respectively. That
is, let Ap̄ := (Ap; 1) ∈ R4 and likewise for B p̄ (note that ; indicates row
concatenation). Then

Ap̄ = AHB
B p̄, (2.13)

which is the matrix form of Ap = ARB
Bp + AoB. We refer the interested

readers to [Murray et al., 1994, Chapter 2] for further details on homoge-
neous representation of rigid transformations.
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2.3.3 6D Velocity vectors

In the following, given a point p and a frame A, we define

Aṗ :=
d

dt

(
Ap
)
. (2.14)

In particular, when p is the origin of a frame, e.g., p = oB, we have

AȯB =
d

dt

(
AoB

)
.

It is important to note that, by itself, expressions like ȯB or ṗ have no
meaning. Similarly to (2.14), we also define

AṘB :=
d

dt

(
ARB

)
(2.15)

and

AḢB :=
d

dt

(
AHB

)
=

[
AṘB

AȯB
01×3 0

]
. (2.16)

The relative velocity between a frame B with respect to a frame A can be
represented by the time derivative of the homogenous matrix AHB ∈ SE(3).
A more compact representation of AḢB can be obtained multiplying it by
the inverse of AHB on the left or on the right. In both cases, the result is
an element of the se(3) that will be called a 6D velocity. Premultipliying on
the left, one obtains

AH−1
B

AḢB =

[
ART

B −ART
B
AoB

01×3 1

] [
AṘB

AȯB
01×3 0

]
=

[
ART

B
AṘB

ART
B
AȯB

01×3 0

]
. (2.17)

Note that ART
B
AṘB appearing on the right hand side of (2.17) is skew

symmetric. Define BvA,B and BωA,B ∈ R3 so that

BvA,B := ART
B
AȯB, (2.18)

Bω∧
A,B := ART

B
AṘB. (2.19)

The left trivialized velocity of frame B with respect to frame A is

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6. (2.20)
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By construction,

Bv∧A,B = AH−1
B

AḢB. (2.21)

Note the slight abuse of notation in using the hat operator ∧ in (2.19)
and (2.21) that maps a vector into its corresponding matrix representation
(respectively, from R3 to R3×3 using (2.5) in (2.19) and from R6 to R4×4

using (2.7) in (2.21)).
Specularly to what was done in (2.17), right multiplying AḢB by the inverse
of AHB leads to

AḢB
AH−1

B =

[
AṘB

AȯB
01×3 0

] [
ART

B −ART
B
AoB

01×3 1

]
=

[
AṘB

ART
B

AȯB − AṘB
ART

B
AoB

01×3 0

]
. (2.22)

Define AvA,B and AωA,B ∈ R3 as

AvA,B := AȯB − AṘB
ART

B
AoB (2.23)

Aω∧
A,B := AṘB

ART
B. (2.24)

The right trivialized velocity of B with respect to A is then defined as

AvA,B :=

[
AvA,B
AωA,B

]
∈ R6. (2.25)

By construction,

Av∧A,B = AḢB
AH−1

B . (2.26)

The right trivialized and left trivialized representation of the velocity
between two frames are general concepts, that can be applied to any pair of
frames in the 3D space. When the frame A is an inertial frame and the B
frame is rigidly attached to a body, as we will assume in this chapter, these
velocities representations are also called inertial velocity and body velocity.

The mapping between AvA,B and BvA,B is trivial to express in matrix
form, as it follows directly from their definitions that:

Av∧A,B = AHB
Bv∧A,B

AH−1
B

From this expression, it is clear that the “frame transformation” mapping
between BvA,B and AvA,B is a linear mapping. By writing the 6D velocity
in linear form:

AvA,B = AXB
BvA,B

15



with:
AXB = AXB

(
AHB

)
=

[
ARB

Ao∧B
ARB

03×3
ARB.

]
(2.27)

This is usually called the adjoint matrix.

Remark 2.2. Through out this thesis, given a quantity such as position,
velocity, etc., we define the dot operator ˙(−) as the total time derivative of
the quantity. Hence, given a 6D velocity Cv expressed in a frame C, the
symbol C v̇ means

C v̇ =
d

dt

(
Cv
)
.

While this may be obvious and pedantic, let us recall that the dot operator
˙(−) is defined differently in some of the robotics dynamics literature. For

instance, given a 6D velocity Cv expressed in a frame C, [Featherstone,
2008, Section 2.10] defines C v̇ as

CXA
d

dt
(Av),

where A is an arbitrary (and often hidden) inertial frame with respect to
(w.r.t.) which the derivative is computed.

2.3.4 Adjoint matrix as a change of frame

The 6 × 6 transform is ubiquous in multibody dynamics, and it is usually
interpreted as the “change of frame” in which the frame velocity is expressed.
Let’s assume that we have a frame B̃ that is rigidly attached to the frame
B, i.e. :

BḢB̃ = 0 (2.28)

Noting that AHB̃ = AHB
BHB̃,

AḢB̃ = AḢB
BHB̃, we can see that the map-

ping between the left-trivialized velocity of frame B and the left trivialized
velocity of frame B̃ is given by:

B̃v∧
A,B̃

= AH−1
B̃

AḢB̃ = (2.29)

= BH−1
B̃

Bv∧A,B
BHB̃. (2.30)

From which we have:

B̃vA,B̃ = B̃vA,B = B̃XB
BvA,B.
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Similarly, if we imagine to define a new frame Ã rigidly attached to our
previous frame A, we will have:

ÃvA,B = ÃXA
AvA,B. (2.31)

This gives us a nice “interpretation” of the linear component of the
left-trivialized velocity as the velocity of the origin of a frame fixed to the
frame B that is instantaneously coincident with the frame A, that has been
popularized by [Featherstone, 2008].

Mixed velocity

In the previous subsection we introduce the left-trivialized and right-trivialized
velocity of a frame B with respect to an frame A. In the next chapter we
will further discuss their use and properties, but for the moment we want
to highlight a “peculiar” feature of both this velocities representation: in
neither cases the linear part of the velocity is the derivative of the position
vector of the origin of the frame B, i.e. AȯB . On the other hand, it is quite
common for undergraduate physics textbooks or even in robotics [Siciliano
et al., 2008] to represent the velocity of a rigid body as a 6D vector given
by: [

AȯB
AωA,B

]
(2.32)

To simplify the description of the algorithms and concepts available in this
thesis, we need a way to express this quantity coherently with the rest of
the concepts introduced until know.

Fortunately this can be easily interpreted as a left or right trivialized
velocity associated with the appropriate change of frame. In particularly,
we introduce the frame B[A] := (oB, [A]), that is, the frame with the same
origin of B and same orientation of A. We have then:

B[A]HB =

[
ARB 03×1

01×3 1

]
, (2.33)

and by expressing the velocity vA,B in B[A], we get:

B[A]vA,B = B[A]XB
BvA,B =

[
ARB 0
0 ARB

] [
BRA

AȯB
BωA,B

]
=

[
AȯB

AωA,B

]
.

(2.34)
In [Bruyninckx and De Schutter, 1996, Murray et al., 1994, Englsberger,
2016], (2.34) is referred to as the hybrid velocity of frame B with respect to
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frame A. To avoid confusion with hybrid systems theory, we will call (2.34)
the mixed velocity of frame B with respect to frame A (mixed as it has both
the flavors of a left trivialized velocity for the linear velocity part and of a
right trivialized velocity for the angular velocity part).

Table 2.1 collects the definitions of the different representation of the
6D velocity, and the conversion formulas to convert one representation into
another.

2.4 Frame acceleration

The acceleration of a frame (attached to a rigid body) is a quantity for
which the definition is far from being obvious, as already noted in literature
[Featherstone, 2001]. Before introducing the representation for a rigid body
acceleration most used in literature, and their properties, we will discuss the
cross product for 6D velocities, a useful operator to study the properties of
the different accelerations.

2.4.1 The cross product on R6 (×)

Equation (2.21) can be rewritten as

AḢB = AHB
Bv∧A,B. (2.35)

By time differentiation of (2.27), it can be shown that a similar formula
holds for AXB, namely, that

AẊB = AXB
BvA,B× (2.36)

with BvA,B× defined as

BvA,B× :=

[Bω∧
A,B

Bv∧A,B

03×3
Bω∧

A,B

]
. (2.37)

We will refer to (2.37) as the matrix representation of the cross product on
R6.

Remark 2.3. The connection between the cross product on R6 introduced
here and its equivalent concepts in the Lie group language is discussed in the
appendix, in particular in Subsection A.2.2.
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Basic properties of the cross product

Equation (2.37) defines a cross product between vectors of R6, with the
classical anticommutative property

CvA,B × CvD,E = −CvD,E × CvA,B. (2.38)

As a direct consequence of anticommutativity is

CvA,B × CvA,B = 06×1. (2.39)

2.4.2 Acceleration representations and their relation

By direct derivation with respect to time of the left-trivialized, right-trivialized
and mixed 6D velocity, we obtain the respective accelerations, that are de-
scribed in detail in Table 2.2. All the conversions between the accelerations
are also detailed in Table 2.2, and make an extensive use of the 6D cross
product introduced in this section. Please remember that the definition of
the dot notaton ˙(·) is clarified in Remark 2.2.

In the case that the frame A is an inertial frame, some alternative rep-
resentation of the acceleration between a frame B and the inertial frame A
are used in literature, that are described hereafter.

2.4.3 “Sensor” acceleration

We define the “sensor” acceleration as:

αA,B = BXB[A]
B[A]v̇A,B =

[
BRA

AöB
Bω̇A,B

]
(2.40)

This acceleration is used for example in [Siciliano et al., 2008]. Its relation-
ship with inertial sensing will be discussed in Subsection 4.3.2.

2.4.4 “Proper” acceleration

It is widespread, in the literature on multibody dynamics applied to robotics,
to sometimes refer to a vector of the acceleration minus the gravitational
acceleration. The same symbols is sometime used to refer both to the accel-
eration with respect earth-fixed inertial frame and this acceleration minus
gravity. To avoid confusion, in this thesis we will always refer to this as
proper acceleration, as opposed to the coordinate acceleration, consistently
with the nomenclature used in relativity theory [Fraundorf, 1996].

19



N
am

e
S
y
m
b
ol

D
efi
n
it
io
n

L
ef
t-
T
ri
v
ia
li
ze
d

R
ig
h
t-

T
ri
v
ia
li
ze
d

M
ix
ed

L
ef
t-
T
ri
v
ia
li
ze
d

B
v
A
,B

[ A
R

T B
A
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We define first the “proper” acceleration using the “sensor” representa-
tion, as:

αg
A,B := αA,B −

[
BRA

Ag
03×1

]
(2.41)

Note that this is the acceleration that can be obtained by an inertial mea-
surement unit aligned with B, as the linear part of it is the output of a
linear accelerometer, and the angular part is the derivative of the output of
a gyroscope. This is thoroughly discussed in Section 4.3.2.

For all other accelerations, we define:

Bag := B v̇ −
[
BRA

Ag
03×1

]
, (2.42a)

Aag := Av̇ −
[

Ag
03×1

]
, (2.42b)

B[A]ag := B[A]v̇ −
[

Ag
03×1

]
(2.43)

as respectively the left-trivialized, right-trivialized and mixed proper accel-
eration. Note that all the conversion rules presented in Table 2.2 still hold
for proper acceleration in the presented form.

2.4.5 Illustrative Example: the Spinning Wheel

To see a concrete example of the definition just presented, we use a spinning
wheel, depicted in Figure 2.1. An inertial frame A is rigidly attached to the
ground, while there is a moving frame B attached to the external part of a
wheel of radius r spinning around the axis:

Aa = Ba =

00
1


passing in the point oC . Furthermore, the system is affected by a uniform
gravitational field with the gravity acceleration vector, whose expression in
the A orientation is:

Ag =

 0
−|g|
0

 .
The location of the spinning wheel w.r.t. the inertial frame is given by the
angle θ. Assuming that for θ = 0 the orientation of A and B coincide, we
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oC

Fig. 2.1 Spinning wheel, with the gravity acceleration g, the inertial frame
A and the moving frame B at θ = −π

2 .
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can define the transform between A and B as (where we define H := AHB

and R := ARB to avoid overloading the notation).

H(θ) =

[
R(θ) AoC +R(θ)

[
0
r
0

]
01×3 1

]
, R(θ)=

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .(2.44)
Taking the derivatives w.r.t. to time, we have that:

Ḣ(θ, θ̇) =

[
Ṙ(θ, θ̇) Ṙ(θ, θ̇)

[
0
r
0

]
01×3 0

]
,

Ṙ(θ, θ̇) =

− sin(θ) − cos(θ) 0
cos(θ) − sin(θ) 0

0 0 0

 θ̇,
RT (θ)Ṙ(θ) =

0 −1 0
1 0 0
0 0 0

 θ̇,
Ṙ(θ)RT (θ) =

0 −1 0
1 0 0
0 0 0

 θ̇.
Using the definition of left-trivialized, right-trivialized and mixed veloc-
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ity summarized in Table 2.1 we then have:

BvA,B =

[
BvA,B
BωA,B

]
=

[
RTAȯB
(RT Ṙ)∨

]
=



−r
0
0
0
0
1

 θ̇,

AvA,B =

[
AvA,B
AωA,B

]
=

[
AȯB − ṘRTAoB(

ṘRT
)∨ ]

=



− cos(θ)r
− sin(θ)r

0

−

00
1

∧

AoB

0
0
1

 θ̇,

B[A]vA,B =

[
B[A]vA,B
B[A]ωA,B

]
=

[
AȯB(
ṘRT

)∨] =



− cos(θ)r
− sin(θ)r

0
0
0
1

 θ̇ + .
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Similarly, for the accelerations defined in Table 2.2 we then have:

B v̇A,B =



−r
0
0
0
0
1

 θ̈

Av̇A,B =



− cos(θ)r
− sin(θ)r

0

−

00
1

∧

AoB

0
0
1

 θ̈ +


 sin(θ)r
− cos(θ)r

0

−

00
1

∧ − cos(θ)r
− sin(θ)r

0


0
0
0

 θ̇
2,

B[A]v̇A,B =



− cos(θ)r
− sin(θ)r

0
0
0
1

 θ̈ +


sin(θ)r
− cos(θ)r

0
0
0
0

 θ̇
2,

αA,B =



−r
0
0
0
0
1

 θ̈ +


0
−r
0
0
0
0

 θ̇
2 =



−rθ̈
−rθ̇2
0
0
0

θ̈

 .

2.5 Force-Torque covectors

In classical mechanics, the interaction between a rigid body and the enviro-
ment is described by interaction forces. While this forces can be described
as a system of forces acting on finite number of contact points it is common
to represent the effect of this interaction forces as a 6D force-torque vector,
in which the first three elements are the sum of all the contact forces, while
the last three coordinate are the sum of the moments of this forces with
respect to a given point in space. Similarly to the 6D velocity case, also
for the 6D force-torque can be said to be represented in different frames, in
which the origin of the frame is the point with respect to which the moment
is taken and the orientation is the one in which the forces and moments are
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expressed. In particular we indicate the coordinates of a 6D force f with
respect to frame B with

Bf :=

[
Bf

Bτ

]
∈ R6. (2.45)

Note that the frame B is simply used to indicate the coordinate frame with
respect to which the 6D force f is expressed in coordinates and there is no
necessity for the 6D force f to also be applied to, e.g., the rigid body (if any)
to which B is attached. Similarly to what we did for a 6D velocities, we can
define a linear map to change the coordinates of a 6D force from a frame B
to another frame A. This coordinate transformation is indicated with AX

B

and written as

Af = AX
B
Bf. (2.46)

The mapping AX
B is actually induced by the velocity transformation (2.27)

(why this is the case will be explained below) and is related to BXA via the
definition

AX
B := BXT

A . (2.47)

It is important to realize that (2.47) is such to make the following identity
(of power) hold 〈

Bf,
BvA,B

〉
=
〈
Af,

AvA,B

〉
, (2.48)

where f can be interpreted as a 6D force applied to a rigid body to which
the moving frame B is rigidly attached and A as the absolute inertial frame.

2.5.1 The dual cross product on R6 (×̄∗)

The time derivative of the 6D force coordinate transformation AX
B has an

expression that is dual to velocity coordinate transformation AXB given in
(2.36). Indeed, straightforward computations lead to obtain

AẊ
B = AX

BBvA,B×̄∗ (2.49)

where the (matrix representation of the) dual cross product ×̄∗ is defined
by

BvA,B×̄∗ :=

[Bω∧
A,B 03×3

Bv∧A,B
Bω∧

A,B

]
. (2.50)
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It is worth noting that (2.50) is obtained from (2.37) by simply transposing
this latter expression and taking the negative value of the result: a fact that
is also encoded in the symbol ×̄∗, where the overline sign has been chosen
to represent the minus sign and the star the transpose operation (more
formally, the adjoint of a linear map, typically indicated with a star). The
dual cross product (2.50) takes one 6D velocity and one 6D force and return
one 6D force (as opposed to the cross product (2.37) that takes as input two
6D velocity and return one 6D velocity); this is also the reason why the sub-
and superscripts in (2.49) makes sense: when AẊ

B is applied to a 6D force

Bf expressed in B, the dual cross product between BvA,B and the 6D force
will return a 6D force expressed in B that can then be converted into a 6D
force expressed in A via AX

B. It is also straighforward to prove that

AX
BBvA,B×̄∗ = AvA,B×̄∗

AX
B. (2.51)

Remark 2.4. The connection between the cross product on R6 introduced
here and its equivalent concepts in the Lie group language is discussed in the
appendix, in particular in Subsection A.2.3.

2.6 Rigid Body Dynamics

To discuss rigid body dynamics, we tipically only are interested in two
frames: an inertial frame A and a body-fixed frame B. To avoid confusion
in the readers, throughout this section we then use a simplified notation,
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summarized in the next notation table.



Simplified Notation, valid for Section 2.6
A Inertial frame.
B Frame rigidly attached to the body.
o := AoB Origin of the body w.r.t. to the inertial

frame.
R := ARB Rotation of the body w.r.t. to the inertial

frame.
H := AHB Pose of the body w.r.t. to the inertial

frame.

v =

[
v
ω

]
:= BvA,B Left-trivialized velocity of the body.

p := Ap Generic point of the body expressed in the
inertial frame A.

r := Bp Generic point of the body expressed in the
body frame B.

ρ(·) Density function, taking in input points
expressed in the body frame B.


All the results of system in classical mechanics can be obtained by ap-

plying the principle of least action, that states that the trajectories of a
mechanical systems are the extremum of a trajectory-dependent quantity
called action.

2.6.1 Review of Lagrangian Dynamics: the point mass

Before approaching the lagrangian dynamics of the rigid body, we review
the basic concepts of lagrangian mechanics using a simple example, a point
mass.

The configuration of a point mass with respect to an inertial frame A is
given by its position coordinate vector Ap ∈ R3. To avoid overloading the
notation, in the remainder of this subsection we will indicate the position of
the point mass simply as p := Ap ∈ R3. The velocity of the point mass is
given by the derivative w.r.t to time of the point position, i.e. ṗ := Aṗ.

Assuming that the point mass lies in a uniform gravitational field, and
the effect of the point mass on the gravitational field is negligible, the La-
grangian for a point mass m is the difference between the Kinetic Energy
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K(p, ṗ) and the Potential (Gravitational) Energy U(p):

L(p, ṗ) = K(p, ṗ)− U(p), (2.52a)

K(p, ṗ) =
1

2
m |ṗ|2 , (2.52b)

U(p) = mgT p. (2.52c)

where g ∈ R3 is the gravitational acceleration vector of the uniform field.
The action of a given trajectory is defined as:

S[p(·)] =
∫ t1

t0

L(p(t), ṗ(t))dt

The Principle of Least Action states that the trajectory performed by
such a system is the one that minimize the action. Such a variational prob-
lem can be demonstrated to have the same solution of the Euler-Lagrange
differential equations [Bullo and Lewis, 2005]:

∂

∂p
L(p, ṗ)− d

dt

∂

∂ṗ
L(p, ṗ) = 0.

In the point mass case we have:

∂

∂p
L(p, ṗ) =

∂

∂p
U(p) = mg, (2.52d)

∂

∂ṗ
L(p, ṗ) =

∂

∂ṗ
K(p, ṗ) = mṗ, (2.52e)

d

dt

∂

∂ṗ
L(p, ṗ) = mp̈. (2.52f)

From which we have:

mp̈−mg = 03×1. (2.53)

The left term of the equations is 0 only if the only external force acting
on the point mass is the gravitational force described by the potential U(p).
If forces not described by the potential are acting on the point mass, the
equation is modified to include this forces acting on the point:

mp̈−mg = f. (2.54)
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2.6.2 Rigid Body Lagrangian Dynamics

In the previous subsection we reviewed the Lagrangian Dynamics formalism
and the principle of Least Action for a simple point mass. In this section
we will see how the same concepts applies, with the appropriate changes, to
the Rigid Body case. But first we need to formally introduce the concept of
rigid body, that was informally presented in Section 2.3.1.

Definition 2.1 (Rigid Body). A rigid body is a mathematical abstraction
describing an arbitrary distribution of mass in the 3D space, that is fixed
with respect to a given frame, that we call the body frame B.

Definition 2.2 (Volumetric Mass Density). The mass distribution of a rigid
body in space is described by a time-invariant density function, that maps
each 3D point (expressed in the frame B) to its density.

ρ(·) : R3 7→ R≥0. (2.55)

The mass m(V ) enclosed in a given 3D volume V is given by the integral
of the density over such a volume:

m(V ) =

∫∫∫
V
ρ (r) dr. (2.56)

Note that if the density domain was defined as the points in the 3D space
expressed in the inertial A frame, the density function would have not been
constant, but it would also explicitly depend on time. As the density of the
rigid body is constant in the body frame B, the pose of the rigid body can
be fully represented by the homogeneous transformation between the body
frame B and the inertial frame A, that for simplicity in this section we will
indicate as H = AHB, with R = ARB and o = AoB.

The relation between a point attached to the rigid body expressed in the
absolute frame Ap, that for simplicity we refer as p and in the body frame
Bp (for simplicity r) is simply given as:[

p
1

]
=

[
R o

01×3 1

] [
r
1

]
=

[
Rr + o

1

]
(2.57)

And its velocity is obtained as:[
ṗ
0

]
=

[
Ṙ ȯ

01×3 0

] [
r
1

]
=

[
Ṙr + ȯ

0

]
(2.58)

30



Similarly to the point mass case (2.52) the kinetic energy of a rigid body
is obtained by integrating all the contributions to the kinetic energy of each
point p of the rigid body:

1

2

∫∫∫
R3

ρ(RT (p− o)) |ṗ|2 dp. (2.59)

While the potential (gravitational) energy is obtained by integrating all
the contributions to the potential (gravitational) energy of each point p of
the rigid body: ∫∫∫

R3

ρ(RT (p− o))gT pdr. (2.60)

To highlight the dependency of the lagrangian on the state of the rigid
body H, Ḣ, we apply the change of variables p = Rr + o, ṗ = Ṙr + ȯ and
obtain the following definition of the Rigid Body Lagrangian.

Definition 2.3 (Rigid Body Lagrangian). The Lagrangian function for a
rigid body B with pose H ∈ SE(3) and velocity Ḣ is:

L(H, Ḣ) = K(H, Ḣ)− U(H), (2.61a)

K(H, Ḣ) =
1

2

∫∫∫
R3

ρ(r)
∣∣∣Ṙr + ȯ

∣∣∣2 dr, (2.61b)

U(H) =

∫∫∫
R3

ρ(r)gT (Rr + o) dr. (2.61c)

There are two main differences between the Lagrangian of a point par-
ticle (2.52) and of a rigid body (2.61). First the configuration of a point
particle p ∈ R3 is a element of a vector space, while the state of the rigid

body is an element of a matrix Lie group H =

[
R o

01×3 1

]
∈ SE(3). The

second difference is that for the point mass, the parameter describing the
inertia of a particle is a single lumped single parameter, the mass of the point
m. For the rigid body the inertia information is contained in the continuous
density function ρ(·).

The first difference is addressed using the left-trivialized velocity or a rigid
body, while the second difference is addressed by introducing the inertial
parameters, a set of 10 parameters fully describing all the inertial properties
of a rigid body.

Between the different ways we could transform Ḣ in a 6D vector we
choose the left-trivialized velocity because we can directly apply the Euler-
Poincarè equations as will be necessary in Theorem 2.1.
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To reduce the complexity of equations, in the next section we will refer
to the left-trivialized velocity BvA,B as v :

v =

[
v
ω

]
=

[
RT ȯ

(RT Ṙ)∨

]
, Ḣ = Hv∧ =

[
Rω∧ Rv
03×1 0

]
. (2.62)

We can express the Lagrangian (2.61) in function of the left-trivialized
velocity. We refer to the Lagrangian written w.r.t. to the left-trivialized
velocity as the left-trivialized Lagrangian l(H, v).

l(H, v) = L(H,Hv∧) = k(H, v)− U(H), (2.62a)

k(H, v) =
1

2

∫∫∫
R3

ρ(r)
∣∣Rω∧r +Rv

∣∣2 dr =
=

1

2

∫∫∫
R3

ρ(r)
∣∣R(ω∧r + v)

∣∣2 dr =
=

1

2

∫∫∫
R3

ρ(r)
∣∣ω∧r + v

∣∣2 dr. (2.62b)

Remark 2.5. Through the left-trivialization, i.e. introducing a dependency
on v rather than on Ḣ, we remove the dependency on H from the kinetic
energy, an so we can write the trivialized Kinetic energy simply as k(v).

Even if simplified, the left-trivialized Lagrangian still depends explicitly
on the density function. We can simplify its expression by depending on a
fixed number of functional of the density function, that are classically called
inertial parameters.

Proposition 2.1. The left-trivialized Lagrangian of a rigid body can be writ-
ten as:

l(H, v) = k(v)− U(H), (2.63a)

k(v) =
1

2
vTMv (2.63b)

U(H) =
[
gT 0

]
H

[
mc
m

]
(2.63c)

where m ∈ R is the total mass of the body, defined as:

m =

∫∫∫
R3

ρ(r)dr, (2.64)

c ∈ R3 is the center of mass of the body, defined as:

c =

∫∫∫
R3 rρ(r)dr∫∫∫
R3 ρ(r)dr

=

∫∫∫
R3 rρ(r)dr

m
(2.65)
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I ∈ R3×3 is the 3D inertia matrix of the body, defined as:

I = −
∫∫∫

R3

ρ(r)(r∧)2dr ∈ R3×3 (2.66)

and M ∈ R6×6 is the 6D inertia matrix of the body, defined as:

M =

[ ∫∫∫
R3 ρ(r)dr13 −

(∫∫∫
R3 rρ(r)dr

)∧(∫∫∫
R3 rρ(r)dr

)∧ −
∫∫∫

R3 ρ(r)(r
∧)2dr

]
=

[
m −(mc)∧

(mc)∧ I

]
.

(2.67)

Proof. We can isolate the terms that depend on the density and the inte-
gration variable r. For the gravitational energy from (2.62) we have:

U(H) = gT
(
R

∫∫∫
R3

rρ(r)dr + o

∫∫∫
R3

ρ(r)dr

)
=

[
g
0

]T
H

[∫∫∫
R3 rρ(r)dr∫∫∫
R3 ρ(r)dr

]
.

As from (2.64)-(2.65) we have that
∫∫∫

R3 rρ(r)dr = mc and
∫∫∫

R3 ρ(r)dr =
m, we obtain a compact expression for the gravitational energy of a rigid
body in a uniform gravitational field:

U(H) =

[
g
0

]T
H

[
mc
m

]
.

Regarding the kinetic energy from (2.62b) one has:

k(v) =
1

2

∫∫∫
R3

ρ(r)

∣∣∣∣v∧ [r1
]∣∣∣∣2 dr. (2.68)

By noting that the argument of the norm can be written as:

v∧
[
r
1

]
=
[
13 −r∧

]
v

it is possible to write the kinetic energy as a quadratic form of the left-
trivialized velocity v:

k(v) =
1

2

∫∫∫
R3

ρ(r)vT
[
13
r∧

] [
13 −r∧

]
vdr =

=
1

2
vT
∫∫∫

R3

ρ(r)

[
13 −r∧
r∧ −(r∧)2

]
dr v =

=
1

2
vTMv.
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Remark 2.6. Note that while it is common practice to define the center of
mass as in (2.65), U(H) is more easily expressed as a linear function of mc.
mc ∈ R3 is usually called first moment of mass, and it will be discussed in
depth in Chapter 6.

Theorem 2.1 (Euler-Poincaré Equations for Rigid Body Dynamics). Given
a time interval [0, T ] the trajectory H(·) of a rigid body in a uniform gravi-
tational field is the one that minimizes the action:

S[H(·)] =
∫ T

0
L(H(t), Ḣ(t))dt (2.69)

where the rigid body Lagrangian L(H, Ḣ) is defined in (2.61).
In particular the resulting equations of motion are given by:

Ḣ = Hv∧, (2.70a)

Mv̇ + v×̄∗Mv = M
[
RT g
03×1

]
(2.71)

where M is the 6D inertia matrix defined in (2.67) and v×̄∗ is defined in
(2.50).

The proof to Theorem 2.70 is given in Subsection A.3.2, because it re-
quire the necessary background in the matrix Lie group theory.

Lemma 2.1. The equations of motion of a rigid body in a uniform gravita-
tional field under the influence of additional non-gravitational force-torques
are:

Mv̇ + v×̄∗Mv = M
[
RT g
03×1

]
+ Bf

x (2.72)

where Bf
x is the sum of all the external force-torques acting on the body,

expressed in the body frame B.

From this computation we can now write the Newton-Euler equations
using the left-trivialized representation:

Mv̇ + v×̄∗Mv = M
[
RT g
03×1

]
(2.73)

Non-conservative forces can be considered in this model by appropriately
modifying the Lagrangian [Bullo and Lewis, 2005], to obtain the following
equation:

Mv̇ + v×̄∗Mv = M
[
RT g
03×1

]
+ Bf

x (2.74)
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Where fx is the external force-torque exerted by the environment on the
rigid body, expressed in the B frame for consistency with the rest of the
equations.

The same equation can be expressed in a more compact way using the
proper acceleration:

M
(
v̇ −

[
RT g
03×1

])
+ v×̄∗Mv = Bf

x (2.75)

2.7 Newton-Euler equations in the different rep-
resentations

Applying the accelerations and velocity transforms presented in Table 2.1
and Table 2.2, we can easily transform the Newton-Euler equation to be ex-
pressed with respect to the chosen acceleration representation. Furthermore
if velocity and acceleration are written with respect to a frame, we will write
also the external force-torque w.r.t. to the same frame.

2.7.1 Left-trivialized

Using the notation introduced in this thesis in extended form, (2.74) can be
written as:

BMB
B v̇A,B + BvA,B×̄∗

BMB
BvA,B = BMB

[
ART

B
Ag

03×1

]
+ Bf

x (2.76)

2.7.2 Right-trivialized

AMB
Av̇A,B + AvA,B×̄∗

AMB
Av = AMB

[
Ag
03×1

]
+ Af

x. (2.77)

While this equation may seem similar to (2.76) the main difference is that

BMB is a fixed quantity while AMB = AX
B
BMB

BXA that is a time-varying
quantity that depends on the position of the rigid body.

2.7.3 Mixed

The dynamics using mixed acceleration can be written as:

B[A]MB
B[A]v̇A,B +

[
03×1

AωA,B

]
×̄∗

B[A]MB

[
03×1

AωA,B

]
=

B[A]MB

[
Ag
03×1

]
+ B[A]f

x. (2.78)
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2.7.4 Sensor

The dynamics using sensor acceleration can be written as:

BMBαA,B +

[
03×1

BωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
= BMB

[
ART

Bg
03×1

]
+ Bf

x. (2.79)

The equation in this form can compactly written using the proper sensor
acceleration αg

A,B, defined in (2.41) :

BMBα
g
A,B +

[
03×1

BωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
= Bf

x. (2.80)

2.8 Rigid Body Total Momentum and its relation
with Dynamics

Given a rigid body B with a density ρ(·), we define its total momentum
w.r.t. to a frame A expressed in a frame C as:

ChA,B := CX
A

∫
R3

ρ
(
ART

B

(
Ap− AoB

)) [ Aṗ
Aṗ∧Ap

]
dAp = (2.81)

= CX
A

∫
R3

ρ(r)

[ Aω∧
A,Br +

AȯB(
Aω∧

A,Br +
AȯB

)∧
(ARBr +

AoB)

]
dr (2.82)

Note that in this definition, while A and C are just frames, B is a rigid
body.

A more convenient expression for the total momentum is given in the
next theorem.

Lemma 2.2. The total momentum defined in (2.81) can be equivalently
expressed as:

ChA,B := CX
B
BMB

BvA,B. (2.83)

The momentum is a quantity with several interesting properties. One of
it is the following alternative formulation of the Newton Euler equations.

Lemma 2.3. The time derivative of the total momentum expressed in the
inertial frame A is equal to the sum of the potential and contact 6D forces
applied on the body, i.e. one can rewrite the right-trivialized rigid body dy-
namics in (2.77) as:

AḣA,B = AX
B
BMB

[
RT g
03×1

]
+ Af

x (2.84)
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This is formulation of the Newton-Euler equations as the derivative of
the total momentum expressed in the inertial frame is how the Rigid Body
Dynamics is tipically introduced in robotics dynamics literature [Feather-
stone, 2008].

Note that the Newton-Euler equations can be defined also using the
mixed representation, assuming that the origin of the frame L coincides
with the center of mass of the robot, as stated in the next property.

Lemma 2.4. Assuming that the origin of a link frame G is coincident with
the center of mass of the body, i.e. GcB = 0, the time derivative of the total
momentum expressed in the mixed frame G[A] is equal to the sum of the
potential and contact 6D forces applied on the body, i.e.:

G[A]ḣA,B = G[A]X
B
BMB

[
ART

G
Ag

03×1

]
+ G[A]f

x =

[
mAg
03×1

]
+ G[A]f

x. (2.85)
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Chapter 3

Multi Body

In existing control-related robotics literature [Siciliano et al., 2008], the dy-
namics of fixed base structures is introduced through the Lagrangian for-
malism and the Euler-Lagrange equations, that is typically used for having
a greater insight on the structure of the dynamics. Instead, the dynamics of
floating base structure is either derived using the Lagrangian formalism with
singular representation of the rotation of the base [Wieber et al., 2016], or by
taking the Newton-Euler equation for a rigid body as a given[Featherstone,
2008, Jain, 2010]. In this thesis instead we present also free-floating dynam-
ics equations using the Lagrangian formalism, using known results from the
geometrical mechanics literature [Marsden and Ratiu, 2013] such as Euler-
Poincaré and Hamel equations. While the resulting equation of motions are
(clearly) identical to the one that can be obtained assuming as given the
Newton-Euler equations, such a presentation of the Multi Body Dynamics
give the interested reader more insight on the underlying mechanical prin-
ciples.

Another main contribution with respect to most existing literature is the
fact that we model floating systems without assuming any preferred base link
or frame, and we show how the kinematics and dynamics of the robot arise
by choosing different base link. In particular, we show how the equations of
motion associated with different base links can be obtained as a nonlinear
change of variables of the robot state. We also show that this change of
variables can be used to express the robot dynamics as a combination of the
“internal” and the “centroidal dynamics”, as introduced in [Orin et al., 2013]
and extended in [Garofalo et al., 2015]. Attempts to generalize the floating-
base systems’ equations of motion irrespective from the base frame choice
can be found in [van Oort, 2011, Chapter 3] and in [Jain, 2010, Chapter 17,
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Section 3.6]. The main theoretical drawbacks of these works, which have
been largely ignored by the humanoid control literature, is the assumption
that the base frame is rigidly attached to one of the links of the system, that
is instead superseded in this thesis.

While this thesis does not directly include results related to control, its
modelling content has been used in several results achieved on balancing
control of iCub. Control related results based on the modelling developed
in this thesis can be found in [Nava et al., 2016, Pucci et al., 2016a, Dafarra
et al., 2016].

3.1 Composition of relative and absolute velocity

A key aspect in multibody systems is how to compute the absolute position,
velocity and acceleration of a frame D given the absolute position, veloc-
ity and acceleration of a frame B and the relative position, velocity and
acceleration of the frame D w.r.t. to B.

At the position level, this problem is simply solved by the composition
law of homogeneous transformation: given AHB and BHD,

AHD can simply
be obtained by matrix multiplication:

AHD = AHB
BHD. (3.1)

By time differentiation, we obtain a similar relation at velocity and ac-
celeration level:

AḢD = AḢB
BHD + AHB

BḢD, (3.2)
AḦD = AḦB

BHD + 2AḢB
BḢD + AHB

BḦD. (3.3)

This same relation, but written with respect to the 6D velocity and
acceleration in their different representation are given in the next subsection.

Lemma 3.1 (Left-Trivialized Velocity and Acceleration Composition). Given
the transforms AHB,

BHD and their left-trivialized velocities BvA,B,
DvB,D

and accelerations B v̇A,B,
Dv̇B,D, the left-trivialized velocity and acceleration

of the composed transform AHD = AHB
BHD are given by:

DvA,D = DXB
BvA,B + DvB,D (3.4a)

Dv̇A,D = DXB
B v̇A,B + Dv̇B,D + DvA,B × DvB,D. (3.4b)

Lemma 3.2 (Right-Trivialized Velocity and Acceleration Composition).
Given the transforms AHB,

BHD and their right-trivialized velocities AvA,B,
BvB,D
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and accelerations Av̇A,B,
B v̇B,D, the right-trivialized velocity and acceleration

of the composed transform AHD = AHB
BHD are given by:

AvA,D = AvA,B + AXB
BvB,D (3.5a)

Av̇A,D = Av̇A,B + AXB
B v̇B,D + AvA,B × AvB,D. (3.5b)

Lemma 3.3 (Mixed Velocity Composition). Given the transforms AHB,
BHD

and their mixed velocities B[A]vA,B,
D[B]vB,D and accelerations B[A]v̇A,B,

D[B]v̇B,D,
the mixed velocity and acceleration of the composed transform AHD = AHB

BHD

are given by:

D[A]vA,D = D[A]XB[A]
B[A]vA,B + D[A]XD[B]

D[B]vB,D (3.6a)
D[A]v̇A,D = D[A]XB[A]

B[A]v̇A,B + D[A]XD[B]
D[B]v̇B,D+ (3.6b)

+

[
2AωA,B × ARB

B ȯD + AωA,B × (AωA,B × ARB
BoD)

AωA,B × ARB
BωB,D

]
.

Remark 3.1. The complicated expression of propagation of acceleration in
the mixed case (3.6) is one of the reason why the right-trivialized and the left-
trivialized representation are typically preferred in describing in a compact
way multibody algorithms, as discussed in [Featherstone, 2001, 2010].

Remark 3.2. Differently from the left-trivialized and right-trivialized ac-
celerations, the propagation of the mixed acceleration does not require any
information on the linear part of the mixed velocity of any couple of frame
involved in the kinematic propagation. This property holds also for the sen-
sor acceleration, and is a useful property when performing estimation using
only inertial sensing, as will be explained in Subsection 4.4.3.

Lemma 3.4 (Sensor Acceleration Composition). Given the transforms AHB,
BHD

and their sensor accelerations αA,B, αB,D, the sensor acceleration of the
composed transform AHD = AHB

BHD is given by:

αA,D = DXBαA,B + αB,D+ (3.7)

+

[
DRB

[
2(BωA,B × B ȯD) +

BωA,B × (BωA,B × BoD)
]

DRB

(
BωA,B × BωB,D

) ]
. (3.8)

3.2 Joints

The joint is a connection that constraints the relative motion between two
rigid bodies. The modelling of joints it is a foundation of modern mechanics
[Denavit and Hartenberg, 1964], and it is an active field of research even in
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the first years of the 21st century [Seth et al., 2010]. In the following section
we will review the main properties of the joint necessary in the following of
the thesis.

The number of degrees of freedom (dofs) of a joint is the number of
relative degrees of freedom between the two body that are left unconstrained
by the joint. In general the number of degrees of freedom of a joint can range
from 0 to 6, and also be time variant. The relative position of two bodies
connected by a joint is in general an element of a manifold whose local
dimension is equal to the number of DOFs of the joint.

Assumption 3.1. For the sake of simplicity, in this thesis we only consider
0-dof and 1-dof joints. In particular we will only considered 1-dof joints,
whose configuration can considered an element of R.

3.2.1 One Degree of Freedom Joints

The transform between two bodies B and D connected by a joint are is fully
determined by the function mapping the joint position θ ∈ R to the relative
pose of the two links connected by the joint:

BHD(θ) : R 7→ SE(3).

The relative velocity and acceleration of D w.r.t. to B is related to the
time derivatives of joint configuration θ:

d BHD(θ)

dt
=
d BHD(θ)

dθ
θ̇ (3.9)

As discussed in the previous chapter, the that typically the relative po-
sition between two bodies is expressed using a 6D velocity representation.

Lemma 3.5. Give a one degree-of-freedom joint described by the transform
function BHD(θ), the left-trivialized, right-trivialized and mixed relative ve-
locity can be computed as:

DvB,D = DsB,D(θ)θ̇,
DsB,D :=

(
(BHD(θ))

−1d
BHD(θ)

dθ

)∨

,(3.10a)

BvB,D = BsB,D(θ)θ̇,
BsB,D =

(
dBHD(θ)

dθ
(BHD(θ))

−1

)∨

, (3.10b)

D[B]vB,D = D[B]sB,D(θ)θ̇,
D[B]sB,D =

[
d
dθ (

BoD(θ))(
dBRD(θ)

dθ (BRD(θ))
T
)∨](3.10c)
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The vector DsB,D ∈ R6 obeys the same transformation rules of 6D veloc-
ity, as it is the mapping between the relative 6D velocity of the two bodies
connected by the joint and the joint velocity and it is known as joint motion
subspace vector.

As the definition of the joint is symmetric w.r.t. to the two links B and
D connected by the joint, they can be inverted in the joint motion subspace
definition, regardless in the frame C in which the joint motion subspace is
expressed, resulting in:

CsD,B = −CsB,D. (3.11)

Assumption 3.2. In this thesis we will always assume that the left-trivialized,
the right-trivialized and the mixed joint motion subspace vector are indepen-
dent of the joint configuration, i.e. :

d DsB,D

dθ
= 06×1, (3.12)

d BsB,D

dθ
= 06×1, (3.13)

d D[B]sB,D

dθ
= 06×1. (3.14)

(3.15)

While this may seem an arbitrary complex requirement, it is actually
observed by most simple joints used in robotics, such as the revolute or the
prismatic joints.

Under Assumption 3.2 we then can write that the relative accelerations
of two bodies connected by a joint are:

Dv̇B,D = DsB,Dθ̇, (3.16)
B v̇B,D = BsB,Dθ̇, (3.17)

D[B]v̇B,D = D[B]sB,Dθ̇. (3.18)

Revolute Joint

A classical example of 1-dof joint is the revolute joint, whose use is widespread
in humanoid robotics.

Definition 3.1. Given a revolute joints with an axis a ∈ R3, |a| = 1 that
connects two bodies B and D, with BHD(0) = 14, the joint transform is
given by:

BHD(θ) =

[
BRD(θ) 03×1

01×3 1

]
, BRD(θ) = 13 + cos (θ)a∧ + sin (θ)

(
a∧
)2
.

(3.19)
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Remark 3.3. For a revolute joint defined as in Definition 3.1, the 3D joint
axis is a is expressed in the same way in the frame B and in the frame D,
as we have that, given that a∧a = 03×1:

Ba = BRA
Aa = 13 + cos (θ)a∧ + sin (θ)

(
a∧
)2 Aa = Aa.

Lemma 3.6. Given a revolute joints defined as in (3.19), the left-trivialized,
right-trivialized and mixed joint motion subspaces coincide, are constant and
are given by:

DsB,D = BsB,D = D[B]sB,D =

[
03×1

a

]
(3.20)

The lemma follows by applying Lemma 3.5 to (3.19).
This result can be generalized to a general revolute joint introducing two

constant transforms B̃HB and DHD̃. The joint connecting the two frames
B and D that coincide for θ = 0 can be transformed in the generic revolute
joint connecting B̃ and D̃ using the following transformations:

B̃HD̃(θ) =
B̃HB

BHD(θ)
DHD̃, (3.20a)

D̃sB̃,D̃ = D̃XD
DsB,D, (3.20b)

B̃sB̃,D̃ = B̃XB
BsB,D, (3.20c)

D̃[B̃]sB̃,D̃ = D̃[B̃]XD[B]
D[B]sB,D. (3.20d)

3.2.2 Fixed joints

A (0-dof) fixed joint connecting two bodies B and D is fully determined
by the (constant) homogeneous transform between the two bodies BHD.
Given that the two bodies are rigidly attached, all the time derivatives of
this transform are equal to zero, i.e. BḢD ≡ 04×4, and one has:

DvB,D = 06×1,
Dv̇B,D =06×1, (3.21a)

BvB,D = 06×1,
B v̇B,D =06×1, (3.21b)

D[B]vB,D = 06×1,
D[B]v̇B,D=06×1. (3.21c)

3.3 Modelling of Multibody Systems

This section recalls notation, state definition, and equations of motion asso-
ciated with free-floating mechanical systems.
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3.3.1 Topology

To mathematically describe the topology, i.e. how joints interconnect the
links, of a multibody system, we need to define use some concepts from graph
theory. While the use of graph theory to model the multibody topology is
a widely studied subject we remark that in the presented formalism we
always treat the graph induced by the multibody structure as a undirected
graph, while existing literature [Jain, 2011, McPhee, 1996] model multibody
systems as directed graphs.

Definition 3.2 (Multibody System). A multibody system is composed by a
set of nL rigid bodies –called links– interconnected by nJ mechanisms –called
joints– constraining the relative motion of a pair of links. From the math-
ematical point of view, a multibody system is represented by a undirected
graph, a couple (L, J), where L is the set of the links (the vertices of the
graph), while J is the set of joints, modeled as sets containing two distinct
links (the undirected edges).

Definition 3.3 (Path). A path from a link B to a link D of length d is an
ordered sequence of d links (L1, L2, . . . , Ld) such that:

L1 = B, Ld = D ∀i ∈ 1, 2, · · · , d {Li, Li+1} ∈ J. (3.22)

Furthermore, we define with πB(L) the unique set of links that lie on the
path connecting L with B.

Assumption 3.3 (Link Frames). We assume that each link L ∈ L is as-
sociated with a link-fixed frame, called link frame. In the sequel, we often
refer to the frame attached to link L simply as L.

Assumption 3.4 (Joint’s Degrees of Freedom). We assume that each joint
possess either zero or one degree-of-freedom. For each joint {E,F} ∈ J, we
define a function DOFs(·) that returns the number of degree-of-freedom of
the joint:

DOFs(·) : J 7→ {0, 1} .

Definition 3.4 (Acyclic Graph). A multibody system is acyclic if there
are no loops in its structure. In mathematically terms, a multibody system
is acyclic if for every ordered pair of links (B,C) there is a unique path
connecting B to C.

Assumption 3.5 (Acyclic Graph). All the multibody systems considered in
this thesis are acyclic.
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Definition 3.5 (Internal Degrees of Freedom). The internal degrees of free-
dom of given multibody system, indicated with n, are defined as the sum of
all the degrees-of-freedom of all the joints contained in the multibody system:

n :=
∑
J∈J

DOFs(J) (3.23)

The assumption of acyclicity of the multibody systems mean that all
considered systems will be represented by an undirected tree. In general an
undirected tree can be represented as a directed tree by selecting one link
as the root or base of the tree. If we indicate the selected base as B, the
direction of any given joint given the basel link B is defined as toward the
base B.

To fully model this base-induced directionality, we define some helper
functions.

Definition 3.6 (Parent Link). Assuming that B ∈ L is the selected base
link, the parent function:

λB(·) : L−B 7→ L (3.24)

is defined as the function that maps every link (except the base B) to its
unique parent. As, by definition, the base link B is the root of the directed
tree, no parent is defined for it.

Definition 3.7 (Ancestor Link). Given a base link B ∈ L, the nth ancestor
link of L ∈ L is defined as the power of the parent function:

λnB(L) = λB(. . . λB(L))︸ ︷︷ ︸
n

. (3.25)

Definition 3.8 (Children Links). Given a base link B ∈ L, we define the
set of the children of a link L as all links whose parent is L:

µB(L) := {D ∈ L | λB(D) = L}. (3.26)

Definition 3.9 (Subtree Links). Given a base link B ∈ L, we define the set
of the subtree starting at link L as γB(L) :

γB(L) := {D ∈ L | ∃ n ∈ N s.t. λnB(D) = L} ∪ {L}. (3.27)

Definition 3.10 (Neighbor Links). We define with ℵ(L) the set of all links
that are adjacent to link L, i.e. the neighbors of L:

ℵ(L) = {D ∈ L | {D,L} ∈ J} . (3.28)
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Note that the set of neighbors does not depend on the definition of a
specific base.

Lemma 3.7. Given a link L, for every B ̸= L the set of neighbors of L
ℵ(L) is the union of the singleton containing the parent link λB(L) and the
children set µB(L):

ℵ(L) = {λB(D)} ∪ µB(L). (3.29)

Lemma 3.8. Given a link L the set of neighbors of L ℵ(L) is also the
children set using L as a base νL(L):

ℵ(L) = µL(L). (3.30)

3.3.2 Numbering

In the previous section, we introduced the basic elements composing a multi-
body systems, i.e. links and joints, as abstract elements. For composing link
and joint related quantities such as position, velocity or torques in familiar
linear algebra concepts such as matrices or vectors, it is convenient to as-
sociate each link and joint to unique natural number, that we call index of
the Link or Joint, defined in the following.

Definition 3.11 (Link Serialization). Each link is associated to a natural
number by the numbering bijective function LinkIndex(·):

LinkIndex(·) : L → 1, 2, . . . , nL. (3.31)

Definition 3.12 (Joint Serialization). Each link is associated to a natural
number by the numbering bijective function JointIndex(·):

JointIndex(·) : J → 1, 2, . . . , nJ . (3.32)

Similarly to the link and joint cases, it is also convenient to associate to
each (internal) degree-of-freedom of the system a natural number. However,
the fact that each joint can have either 0 or 1 dof complicates the definition,
given in the following.

Definition 3.13 (Degree-of-Freedom Serialization). Each non-fixed joint is
associated with a natural number describing the position of the DOF associ-
ated with that in vectors with n size describing internal position, velocities
of the robot by the DOFsOffset(·) function.

DOFsOffset(·) : J− J0 → 1, 2, . . . . (3.33)

Where J0 := {J ∈ J | DOFs(J) = 0} is the set of fixed joints.
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Remark 3.4. In classical approaches this numbering is also used to encode
some of the hierarchical properties of a spanning directed tree induced by
the choice of an arbitrary floating base link. In particular the regular num-
bering is usually adopted [Featherstone, 2008, Jain, 2010], in which every
parent link has a number lower then the ones of its children. This aid the
description of some algorithms for multibody dynamics but has the downside
of coupling the chosen numbering with the chosen base link. As in this chap-
ter we explore and use in depth the concept of changing the base frame of
the system, we opted to keep the numbering and the topology of the system
separated, such that internal quantities such the robot shape are independent
of the choice of the base frame.

Definition 3.14 (Degrees of Freedom in a Path). The set of DOFs that
belong to a path πB(L) is defined as πDOF

B (L):

πDOF
B (L) := {i ∈ N | ∃E,F ∈ L ∧DOFsIndex({E,F}) = i ∧ (3.34)

∧ E = λL(F ) ∧ E,F ∈ πB(L)}. (3.35)

3.3.3 Shape

We define with s ∈ Rn the position of all the joints in the system.
For a given joint {E,F} ∈ J with DOF({E,F}) = 1, its configuration

can be found in the shape vector at the location DOFsOffset({E,F}).
Consistently with Assumption 3.1, the velocity and acceleration of the

internal joints are given by ṡ ∈ Rn and s̈ ∈ Rn.

Remark 3.5. In geometric mechanics literature, the configuration of the
internal joints of a multibody system is called the shape of the system.

3.4 Relative Forward Kinematics

Using the definition relative to the joints, we can now define the basic rela-
tionship between the shape s of a multibody system and the relative position,
velocity and accelerations of the body composing the system, i.e. the links.

With the definition of joints as given before and given the shape of the
system s, it is possible to compute the relative forward kinematics, i.e. the
relative position of two arbitrary bodies L and D : LHD(s). It is defined in
the following:

LHD(s) =
LHλD(L)

λD(L)Hλ2
D(L) . . .

λd−1
D (L)Hλd

D(L). (3.36)
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In particular, the transform between the two nearby links L and λD(L)
is given by the joint model, as explained in 3.2. This joint transform is
constant if DOF ({λD(L), L}) = 0 or it is dependent on sDOFsOffset({λD(L),L})
otherwise.

Proposition 3.1 (Left-trivialized Relative Jacobian). The left-trivialized
relative velocity DvL,D(s, ṡ) can be written as:

DvL,D(s, ṡ) =
DSL,D(s) ṡ(s). (3.37)

Where DSL,D ∈ R6×n is the relative left-trivialized Jacobian.
The i-th column of DSL,D, i.e. (DSL,D)(:,i) is given as:

(DSL,D)(:,i) =

{
DXF

F sE,F i ∈ πDOF
L (D) ∧DOFsOffset({E,F}) = i

06×1 otherwise

(3.38)

Proof. For the sake of readability, in the proof we will drop the explicit
dependency on s and ṡ.

The left-trivialized velocity DvL,D is defined as:

DvL,D =
(
DHL

LḢD

)∨
. (3.39)

From the time derivative of (3.36), DHL
LḢD can be written as (assuming

that DOFsOffset({E,F}) = i):

DHL
LḢD =

∑
i∈πDOF

L (D)

DHL
LHE

∂EHF

∂si
FHDṡi = (3.40a)

=
∑

i∈πDOF
L (D)

DHF
FHE

∂EHF

∂si
FHDṡi = (3.40b)

=
∑

i∈πDOF
L (D)

DHF
F s∧E,F

FHDṡi = (3.40c)

=
∑

i∈πDOF
L (D)

(
DXF

F sE,F

)∧
ṡi, (3.40d)

where in the derivation we use that F s∧E,F = FHE
∂EHF
∂si

from (3.10) and

then that DXF
F sE,F =

(
DHF

F s∧E,F
FHD

)∨
from (2.27).
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Combining (3.39) and (3.40d) one obtains:

DvL,D =
∑

i∈πDOF
L (D)

(
DXE

EsE,F

)
ṡi, (3.41)

that written in matrix form is (3.37).

3.5 Multibody Lagrangian Dynamics

In this section we introduce the dynamics of a multibody system using La-
grangian concepts, as done for the rigid body in Section 2.6. To reduce
unnecessary complexity and improve readability, in this section we will al-
ways use the left-trivialized representation for rigid body velocity, accelera-
tion and forces. Expression to transform the dynamics using the different
representation are then given in Section 3.7.

3.5.1 Absolute State definition

Being a mechanical system, the equations of motion governing its dynamics
are a second-order differential system. Hence, we have to define a state of
the system composed of a properly defined position and velocity.

Free-Floating system position

The process of defining the system position aims at determining a set of
variables from which the position of each point of the multi-body system can
be retrieved in the absolute frame A. Being a composition of rigid bodies,
each point of the multi-body system can be retrieved from the position-and-
orientation – referred to as pose – of each link frame L ∈ L. Given the
topology of the considered multi-body system, however, each link pose can
be determined from the pose of the base frame B and the joint configurations
or shape (see Figure 3.1). In light of the above, the configuration of a
free-floating system is given by the base pose AHB ∈ SE(3) and the joint
positions s ∈ Rn, i.e. one can define the configuration set Q as follows:

Q = SE(3)× RnJ , (3.42)

qB = (AHB, s) ∈ Q. (3.43)

The B superscript in qB emphasizes the dependency on B of the repre-
sentation of the configuration.
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Free-Floating system velocity

In view of (3.43), the derivative of the robot position is given by:

q̇B := (AḢB, ṡ).

As in the case of a single rigid body discussed in detail in Chapter 2 it
is more convenient to represent the velocity as a column vector. Using the
left-trivialized base velocity representation, we can define the system velocity
vector νB ∈ R6+nJ as follows:

νB/B =

BvA,B

ṡ

 =

 ART
B
AȯB

(ART
B
AṘB)

∨

ṡ

 ∈ Rn+6, (3.44)

with BvA,B ∈ R6 the left-trivialized base velocity, and ṡ the joint velocities.
In a similar way we can represent the system velocity with the right-

trivialized or mixed representation for the base velocity:

νB/A =

AvA,B

ṡ

 =

 ART
B
AȯB

(ART
B
AṘB)

∨

ṡ

 ∈ Rn+6, (3.45)

Remark 3.6. The system position and velocity depend upon the choice of
base link B. Furthermore, the system velocity vector depends also on the
representation used for the base 6D velocity, either left-trivialized, right-
trivialized or mixed.

3.5.2 Kinematics

We recall below how to relate the pose and velocity of an arbitrary link
frame L ∈ L to the Free-Floating system position and velocity.

The pose of a link L w.r.t to the inertial frame is a function of the system
position qB (see Figure 3.1):

AHL(q
B) : Q 7→ SE(3), (3.46a)

AHL(q
B) = AHB

BHL(s) =
[

ARB
AoB

01×3 1

]
BHL(q). (3.46b)

The velocity of a frame L w.r.t. to the inertial frame is the product
between a robot position-dependent Jacobian matrix JL,B/B(q

B) ∈ R6×n+6

and the system velocity:

LvA,L(q
B, νB) = JL,B/B(q

B)νB, (3.47a)

JL,B/B(q
B) =

[
LXB

LSL,B(s)
]
. (3.47b)
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AHB

BHL(s)

AHL = AHB
BHL(s)

A

B

L

Fig. 3.1 The pose of a frame AHL is a function of the base pose AHB and
the shape s of the mechanism.
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The equations (3.46) and (3.47) represent the so-called forward kinemat-
ics of the link L using B as the base frame, and using the left-trivialized
base velocity, i.e. expressed in the frame B. For the time being, in this
chapter we will always assume that the base link B is known and fixed, and
consequently we will avoid explictly indicating the base dependency on the
different quantities, i.e. we will simply indicate qB with q, νB with ν, LvA,L

with vL and JL,B/B with JL/B. This assumption will be properly discussed
and generalized in Section 3.7.

Furthermore, in the next chapter we will discuss how to derive the equa-
tion of motions using Lagrangian dynamics. To simplify the notation even
more in this section, we will simply assume that we use the left-trivialized
representation, i.e. JL/B will be simply indicated JL. Again, this assump-
tion will be properly discussed and generalized in Section 3.7.

3.5.3 Multibody Lagrangian

Similarly to the Rigid Body case, for a Multibody system in which the
configuration is described by an element of SE(3) × Rn, a generalization
of the Euler-Lagrange equations apply, the Hamel equations. In particular
the Hamel equations can be seen as a combination of the Euler-Poincare
equations for the base part, and the classical Euler-Lagrange equation for
the joint.

The Lagrangian for a Free-Floating Mechanical System can be simply
obtained as the sum of the Lagrangian of each rigid body.

l(q, ν) = k(q, ν)− U(q) (3.48a)

k(q, ν) =
∑
L∈L

LvTA,LML
LvA,L (3.48b)

U(q) = −
∑
L∈L

[
AgT 0

]
AHL(q)

[
mL

LcL
mL

]
(3.48c)

One major difference between (2.63) and (3.48) is that in (3.48) the kine-
matic energy term depends also on the system configuration, rather then
just on the velocity.

The following proposition gives us a more convenient form for the left-
trivialized lagrangian.

Proposition 3.2. The left trivialized lagrangian for a multibody defined in
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(3.48) can be equivalent expressed as:

k(q, ν) =
1

2
νTM(s)ν (3.49)

U(q) = −
[
AgT 0

]
AHB

[
mBc(s)
m

]
(3.50)

where M(s) ∈ Rn+6×n+6 is the system’s mass matrix, defined as:

M(s) =
∑
L∈

JT
L (s)LMLJL(s), (3.51)

m is the total mass of the multibody system:

m :=
∑
L

mL (3.52)

and Bc(s) is the total center of mass of the multibody system, defined as:[
Bc(s)
1

]
:=

1

m

∑
L

BHL(s)

[
mL

LcL
mL

]
(3.53)

The mass matrix has a specific structure, discussed in the next Theorem.

Theorem 3.1 (Mass Matrix structure, [Wensing and Orin, 2016]). The
mass matrix MB can be expressed as follows:

M=

[
BM(s) F (s)
F T (s) H(s)

]
, (3.54)

with FB ∈ R6×n the upper right block of the mass matrix, HB ∈ Rn×n the
joint mass matrix and BMC the so-called locked 6D rigid body inertia of
the multi-body system, i.e.

BM(s) =
∑
L∈L

BX
L(s)LML

LXB(s). (3.55)

Furthermore, the first six rows of the mass matrix define the jacobian of the
articulated body momentum (i.e. the sum of the linear/angular momentum
of all the bodies composing the robot), referred to as the Momentum Matrix.

Bh =
[
BM FB

]
νB =

∑
L∈L

BX
LIL

LvL. (3.56)
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Remark 3.7. In the following we indicate with mL,
LcL and LML the con-

stant inertial quantities for a specific link L. We indicate instead with m,
Bc(s) and LM(s) without any subscript the inertial quantities for all the
robot. Even if by analogy we use the same symbols we used in describing the
dynamics of a single rigid body, always remember that for a multibody this
quantities (except for the total mass) are shape-dependent.

Plugging this lagrangian in the Hamel equations, we then have that the
equations of motions classical form of the equation of a multibody system
expressed in the next theorem.

Theorem 3.2. The equations of motion of a multibody system are given by:

M(s)ν̇ + C(q, ν)ν +G(q) =

[
06×1

τ

]
+
∑
L∈L

JT
L Lf

x, (3.57)

where we have:

M(s) =
∑
L

JT
L LMLJL, (3.58a)

C(q, ν) =
∑
L

JT
L

[
(vL×̄∗

LML + LMLvL×) JL + LMLJ̇L

]
, (3.58b)

G(q) = −M(s)

ART
B
Ag

03×1

0n×1

 . (3.58c)

The proof to this theorem is given in the appendix and in particular in
Theorem A.2, as it requires the necessary background in matrix Lie group
theory.

The matrix C is chosen such that the following properties hold on the
model (3.57):

Proposition 3.3. The mass matrix M is symmetric and positive definite.

Proposition 3.4. The matrix Ṁ − 2C is skew symmetric.

Remark 3.8. To the best of the authors’ knowledge, the compact form of the
Coriolis matrix (3.58b) was proposed for the first time in [Garofalo et al.,
2013].

Remark 3.9. The left-trivialized matrixMB/B(s) depends only on the shape

of the system, i.e. it is independent on the base pose AHB.
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3.6 Base Change of Variables

In the next sections, we will see that the effect of changing base representa-
tion and base link choice can be represented as a change of state. We can
pose all this transformations as a change of state variables from (q, ν) to
(q̃, ν̃). Such transformation can model a change of base representation, a
change of base link or additional useful system transformation as discussed
in Section 3.9. An important feature of the class of transformations con-
sidered is that they only change how base part of the state is represented,
while the shape variable representation is assumed to never change. For this
reason we will call the following class of transformations Base Changes of
Variables:

q̃ = (H̃, s) = (HHT (s), s) (3.58d)

HT (s) ∈ SE(3) (3.58e)

ν̃ = T (q)ν, (3.58f)

T (q) =

[
Tb,b(q) Tb,s(q)
0n×6 1n

]
∈ R(n+6)×(n+6). (3.58g)

Assumption 3.6. For each q, T (q) is invertible, i.e

∀q ∈ SE(3)× Rn ∃ T−1(q).

Assumption 3.7. The function T (·) : SE(3)× Rn 7→ R6+n×6+n is smooth.

Remark 3.10. Given the triangular structure of T (q), T (q) is invertible if
and only if Tb,b(q) is invertible.

Remark 3.11. The assumption 3.6 prevents to use as T (q) a transform that
maps base angular velocity to a derivative of a minimal representation of the
base orientation, such as Euler Angles, as the resulting transformation would
be noninvertible in the singularity point of the representation [Stuelpnagel,
1964].

In the next theorem we see how such a transformation affect the multi-
body dynamics.

Theorem 3.3. Assume that we have a change of variables in the form (3.59)
that respect Assumption 3.6, that is applied to the system described by the
equations of motion introduced in Theorem 3.2. Then, the following results
hold.
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1. The equations of motions (3.57) transform into

˙̃q =
(
Ḣ(q, ν)HT (s) +H(q)ḢT (s, ṡ), ṡ

)
(3.59a)

M̃(q̃) ˙̃ν + C̃(q̃, ν̃)ν̃ + G̃(q̃) =

[
06×1

τ

]
+
∑
L

J̃Lf
x
L, (3.59b)

with (omitting the dependencies to improve readability)

M̃ = T−TMT−1, (3.60a)

C̃ = T−T

(
M

d

dt
(T−1) + CT−1

)
, (3.60b)

G̃ = T−TG. (3.60c)

2. The free-floating system kinetic energy is given by:

K =
1

2
ν̃T M̃(q̃)ν̃ (3.61)

3. Property 3.3 is preserved: if M is symmetric and positive definite then
M̃ is symmetric and positive definite.

4. Property 3.4 is preserved: if Ṁ(q, ν) − 2C(q, ν) is skew symmetric,

then ˙̃M(q̃, ν̃)− 2C̃(q̃, ν̃) is skew symmetric.

The demonstration of this theorem is given in Subsection 3.10.1.
This theorem is important because it ensures us that, as long as we

transforms the dynamics using a transformation in the form (3.59), for the
resulting equations of motion the basic properties required by motion control
algorithm holds. Consequently, the control design can choose the represen-
tation that he prefers, or in which the specific control synthesis is simplified,
without having to verify every time that this properties hold.

3.7 Free Floating Dynamics with different repre-
sentations or the base velocity

Note that (3.57) presents the equation of motion of the multibody system
using the left-trivialized velocity. To obtain the equation of motions for
other representations such as the right-trivialized and mixed representation
of the multibody velocity, we will just apply some nonlinear transformations
for the velocity part of the state. As in this section we need to discuss how
to change between different representation of the velocity, we will need to
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be precise with respect to the representation used, at the expense of the
lightness of the notation. Furthermore the equation provided in this section
will provide a convenient reference for the rest of the thesis, and for this
purpose we need to write them in a non ambiguous way. In particular, we
are interested to understand to which state transformation in the form 3.59
change in base velocity representation from left-trivialized to right-trivialized
or mixed representation is associated, to exploit the properties enunciated
in the previous section.

3.7.1 Left-trivialized

For, we first just rewrite the equations of motion using the complete nota-
tion.

Theorem 3.4. The equations of motions of a multibody system using B as
the base link, and using the left-trivialized representation of the base velocity,
are given by:

MB/B(s)ν̇
B/B + CB/B(q

B, νB/B)νB/B +GB,B(q) =

=

[
06×1

τ

]
+
∑
L

JT
L,B/BLf

x, (3.62)

where we have:

MB/B(s) =
∑
L

JT
L,B/B LMLJL,B/B, (3.63a)

CB/B(q
B, νB/B) =

∑
L

JL,B/B

[(
LvA,L×̄∗

LML + LML
LvA,L×

)
JL,B/B +

+LMLJ̇L,B/B

]
, (3.63b)

GB/B(q) = MB/B(s)

ART
B
Ag

03×1

0n×1

 . (3.63c)

Remark 3.12. Similarly to the rigid body case, the left-hand side of (3.62)
can be written to depend just on the sensor proper acceleration αg

A,B, the body

angular velocity BωA,B and the shape position, velocity and accelerations
s, ṡ, s̈, i.e.:

MB/B(s)ν̇
B/B + CB/B(q

B, νB/B)νB/B +GB,B(q) =

Γ(αg
A,B,

BωA,B, s, ṡ, s̈) =

[
06×1

τ

]
+
∑
L

JT
L,B/BLf

x, (3.64)
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Such representation is not convenient when analyzing the multibody system
as a dynamical system as it lumps together the linear acceleration of the
base with the gravity expressed in body frame, that depends on another part
of the state (the rotation between the base frame B and the inertial frame
A). However, it is extremely convenient in estimation and identification,
because αG and BωA,B can easily be obtained from common inertial sensors,
as explained in Chapters 4 and 7.

3.7.2 Right-Trivialized

Lemma 3.9. Assume that the base velocity representation is changed from
left-trivialized to right-trivialized. Then, the following results hold.

1. The system position and velocity are subject to the following transfor-
mations

HT = 14, (3.65)

B/ATB/B =

[
AXB 06×n

0n×6 1n

]
. (3.66)

2. The jacobian JL,B/A ∈ R6×n+6 of a link frame L is subject to the
following transformation

JL,B/A = AXLJL,B/B
B/BTB/A. (3.67)

3.7.3 Mixed

Lemma 3.10. Assume that the base velocity representation is changed from
left-trivialized to mixed. Then, the following results hold.

1. The system position and velocity are subject to the following transfor-
mations

HT = 14 (3.68)

B/B[A]TB/B =

[
B[A]XB 06×n

0n×6 1n

]
. (3.69)

2. The Jacobian JL,B/A ∈ R6×n+6 of a link frame L is subject to the
following transformation

JL,B/B[A] =
B[A]XLJL,B/B

B/BTB/B[A]. (3.70)
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3.8 Free Floating Dynamics with different base
links

Similarly to the change of base velocity representation, also a change of the
base link can be represented as Base Change of Variables.

The main difference is that a change of base link introduce the transfor-
mation matrix T is not block diagonal anymore. Furthermore, the change
of variables involves also the base position part of the state, i.e. HT ̸= 14.
To improve the details carried by the complete notation, given a robot ve-
locity νB/B and a transformed robot velocity νD/D we define D/DTB/B as
the matrix for which it holds that:

νD/D = D/DTB/Bν
B/B. (3.71)

In analogy with the force transformation matrix for 6D forces, we also define

D/DT
B/B as:

D/DT
B/B =

(
D/DTB/B

)−T
. (3.72)

Property 3.1. The state transformation associated with a change of base
link from a link B to a link D is of the form 3.59. In particular, it is given,
depending on the used velocity representation:

� Left-Trivialized Change of Base Link

HT = BHD, (3.73)

D/DTB/B =

[
DXB

DSD,B

0nJ×6 1nJ

]
. (3.74)

� Right-Trivialized Change of Base Link

HD/ATB/A
= BHD, (3.75)

D/ATB/A =

[
16

ASD,B

0nJ×6 1nJ

]
. (3.76)

� Mixed Change of Base Link

HT = BHD, (3.77)

D/D[A]TB/B[A] =

[
D[A]XB[A]

D[A]SD,B

0nJ×6 1nJ

]
. (3.78)
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Remark 3.13 (Pure internal joint torques invariance). Let ΓB be a free-
floating generalized force acting on the multi-body system. If ΓB has a base
force-torque equal to zero, then it is independent from the base frame in
which it is expressed, i.e.

T T

[
06×1

τB

]
=

[
06×1

τD

]
=

[
06×1

τ

]
.

Remark 3.14 (External joint torque base dependency). Let assume that B
is the base link, and the base dynamics is represented using the left-trivialized
representation. The effect of a pure base force-torque Bf

x
B on a the link B is

by definition the generalized force where the first six elements are given by
fxB and joint part is equal to zero:

ΓB/B =

[
Bf

x
B

0n×1

]
.

The generalized force expressed w.r.t. another base link D is given by:

ΓD/D = D/DT
B/BΓB/B =

[
DX

B 06×nJ

(DSD,B)
T
DX

B 1nJ

] [
fxB

0n×1

]
=

[
DX

BBfxB
(DSD,B)

T
DX

BfxB

]
.

The first six elements of the transformed generalized torques represent the
external force-torque fxB, but expressed with respect to the origin of D rather
then the origin of B. The last n elements are instead a form of external
joint torques, and they are non-zero only for the joints on the path from B
to D. It is important to note that contrary to the case of fixed base robots,
the external joint torques depend on the floating base, and, consequently,
they do not describe any meaningful base-invariant physical quantity.

3.9 System state transformation providing centroidal
dynamics

In the humanoid robotics literature, it is widespread to control as primary
task the position of the center of mass [Ott et al., 2011] and to minimize the
angular momentum of the robot [Orin and Goswami, 2008, Orin et al., 2013,
Dai et al., 2014, Herzog et al., 2016, Lee and Goswami, 2012, Koolen et al.,
2016]. For analysis purposes, it is then convenient to include the center of
mass in the state representing the robot position [Ott et al., 2011, Nava
et al., 2016]. Such an inclusion can be expressed as a change of variables
using the formalism discussed in the previous sections. Expressing such
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change of variables in the proposed formalism simplifies the computation of
the system dynamics in the new state.

As detailed in the next subsection, the state transformation equations
given by using a generic base frame rather a base frame rigidly attached
to a link are simpler when using the mixed representation. Furthermore
the works related to multi-task control and centroidal dynamics typically
use the mixed representation. For this reason in this section we will prefer
to use the mixed representation, with the following simplified notation to
improve the readability of the section.





Simplified Notation, valid for Section 3.9
A Inertial frame.

B := B[A] Frame with the orientation of the inertial
frame A and with the origin at the origin
of frame B.

νC :=

[
C[A]vA,C

s

]
Robot velocity using the mixed velocity of
C as the base frame.

MC :=MC/C[A] Mass matrix using C as the base frame
and the mixed representation for base
quantities.


3.9.1 Frames not rigidly attached to a link

So far, the base frame transformation was meant to be between a frame B
and a frame D, and both of these frames were assumed to be attached to a
physical link. This assumption, however, is not strict. As a matter of fact,
we can assume that the base frame D is a frame whose origin is that of a
frame E, and whose orientation that of a frame F :

qE[F ] :=
(
AHE[F ], s

)
=

([
ARF

AoE
03×1 0

]
, s

)
. (3.79)

Then, the associated generalized robot velocity is given by:

νE[F ] =

 AȯE
AωA,F

ṡ

 =


AȯE(

AṘF
ART

F

)∨
ṡ

 (3.80)

The new base velocity reflect the different choices of the base position
variables. The Jacobian of the velocity of a frame defined in such a com-
pound way is simply given by the combination of the linear part (first three
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rows) of JC,B, indicated with J l
C,B ∈ R3×(6+n) and the angular part of (last

three rows) of JD,B, indicated with Ja
D,B ∈ R3×(6+n):

JE[F ],B =

[
J l
E,B

Ja
F,B

]
. (3.81)

Note that the property of (3.81) be the simple stacking of the linear and an-
gular Jacobians is a consequence of the use of mixed velocity representation.
Indeed the equivalent jacobians using the inertial or body-fixed representa-
tion are related in a more complex way to the Jacobians of frame E and
F .

From (3.81), one obtains the transformation matrix E[F ]TB to be used
in a base variable changed defined as in :

HT = BHE[F ]
E[F ]TB =

[
JE[F ],B

06×n 1n×n

]
. (3.82)

3.9.2 Recalls on centroidal dynamics quantities

To properly define the centroidal dynamics, it is convenient to define a frame
G whose origin is the center of mass of the multi body system, and whose
orientation is that of the inertial frame A. Note that the use of G is an abuse
of notation, as we do not define an orientation for frame G (see Figure 3.2).

Then, the total momentum and the composite rigid body inertia (CRBA)
of the system expressed w.r.t. the G frame are given by:

Gh = GX
B
Bh, GI

C = GX
B
BI

CBXG. (3.83)

In the robotics literature, these quantities are known as Centroidal Mo-
mentum and as Centroidal Composite Rigid Body Inertia (CCRBI) [Orin
et al., 2013], respectively. The structure of these centroidal quantities is the
following [Orin et al., 2013] :

Gh =

[
mAċ

Gh
a

]
, GI

C =

[
m13×3 03×3

03×3 LC

]
, (3.84)

withm ∈ R the total mass of the robot, Ac ∈ R3 the center of the mass of the
robot expressed in the inertial frame, Gh

a ∈ R3 the total angular momentum
and LC ∈ R3×3 the locked 3D inertia of the robot , both expressed in G.

Given a base frame B, note that the matrix AG,B ∈ R6×(n+6) that mul-
tiplied by the generalized robot velocities vector νB gives the centroidal
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momentum can be easily obtained from the floating base mass matrix. In
fact, by combining (3.56) and (3.83) one has:

Gh = AG,Bν
B, AG,B = GX

B
[
BI

C FB

]
. (3.85)

The AG,B matrix is known as the Centroidal Momentum Matrix [Orin
and Goswami, 2008, Orin et al., 2013].

3.9.3 Average 6D Velocity

In the humanoids whole-body control literature, it is common to define the
average 6D velocity vG of the robot as [Orin et al., 2013]:

vG = (GI
C)−1

Gh =

[
1
m(mAȯG)
(LC)−1

Gh
a

]
=

[
AȯG
ωG

]
. (3.86)

By definition, the linear part of the average 6D velocity (i.e. the first
three components of vG) is simply the velocity of the center of mass of
the system. Its angular part (i.e. the last three components) is called the
average angular velocity ωG [Jellinek and Li, 1989, Essen and Essén, 2004,
Morita and Ohnishi, 2003], even if this name is an abuse of the term angular
velocity because ωG is not defined as the angular velocity of an orientation
frame. In fact, a rotation matrix R(s) ∈ SO(3) such that R(s)RT (s) = ω∧

G

exists only for a limited class of multibody systems [Saccon et al., 2017].
The average angular velocity has a precise physical meaning if a multibody
system is evolving without external forces acting on it. If a generalized
impulse blocks all its joint motions instantaneously, the resulting rigid body
would evolve with an angular velocity ωG. For this reason, ωG is also known
as the locked angular velocity in geometrical mechanics literature [Marsden
and Scheurle, 1993].

The relationship between the generalized robot velocities vector νB and
the centroidal velocity vG can be easily obtained by combining (3.85) and
(3.86):

vG = (GI
C)

−1
AG,Bν

B = (GI
C)

−1

GX
B
[
BI

C FB

]
νB =

=
[
GXB (GI

C)
−1

GX
BFB

]
νB.

Noting that this matrix has the same structure of the floating base jacobian
(3.48), we borrow the notation we use for the Jacobians of links, even if vG
is not defined as the mixed velocity of a well defined frame. So, we define
JG,B and SG,B such that:

νG = JG,Bν
B, (3.87)

63



JG,B :=
[
GXB SG,B

]
:=
[
GXB (GI

C)−1
GX

BFB

]
. (3.88)

3.9.4 Centroidal change of variables

Including the center of mass in the robot state

For the sake of including the center of mass in the multibody dynamics, we
can define a new robot position as follows:

qG[B] = (Ac,ARB, s). (3.89)

This implies that:

νG[B] =

vG[B]

ṡ

 =

 Aċ

(AṘB
ART

B)
∨

ṡ

 . (3.90)

The corresponding transformation matrix is given by, as explained in
subsection 3.9.1:

G[B]TB =

[
J l
G[B],B

03×(3+n) 1(3+n)×(3+n)

]
, (3.91)

where J l
G[B],B is the center of mass jacobian, i.e. the matrix such that

Aċ = J l
G[B],BνB.

Note that this is also equal to the first three rows of (3.88), i.e. J l
G[B],B =

J l
G,B. The change of base introduced by G[B]TB is the one used in [Ott et al.,

2011].

Block diagonalization of the mass matrix

Using the definition of average 6D velocity of the multibody system, we can
define a centroidal generalized joint velocities vector in which we combine
the average 6D velocity and the joint velocities :

νG =

[
vG
ṡ

]
. (3.92)

Let us remark (again) that there is no such thing as a G frame: the notation
νG is an abuse of notation. In particular, it does not make sense to write qG :
the change of variables induced by the use of the average 6D velocity is only
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A

B

G[B]

G[A]

Fig. 3.2 Graphical depiction of frames A, B, G[A] and G[B] for an example
two legged robot.
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a change of variables in the velocity space, while for the position space it is
usually convenient to continue to use the qG[B] position introduced before.

The mapping GTB from the floating base generalized velocities νB to νG

has the same structure of the change of variables introduced in (3.59):

νG = GTBν
B, GTB =

[
GXB SG,B

0nJ×6 1nJ×nJ

]
. (3.93)

This induces a change of variables also on the generalized robot forces, as
detailed in (3.72), i.e. :

GT
B = GT−T

B =

[
GX

B 06×nJ

−ST
G,BGX

B 1nJ

]
. (3.94)

Using the transformation GTB in (3.60), one can obtain the equations of
motion with (qG[B], νG) as state, i.e. :

q̇G[B] =

([
Aω∧

A,B(ν
G)ARB

Aċ

03×1 0

]
, ṡ

)
, (3.95a)

MG(q
G[B])ν̇G + CG(q

G[B], νG)νG +GG =

[
06×1

τ

]
+
∑
L∈L

JT
L,Gf

x
L, (3.95b)

where AωA,B(ν
G) is the angular velocity of the link B as a function of the

centroidal generalized joint velocity νG.
The equations of motion (3.95b) incorporate in the first six rows what

is usually called the centroidal dynamics, together with the joint dynamics
in a single set of equations of motions. The specific features of such a
representation of the equations of motion are highlighted in the following
theorem, and they have been already exploited in [Nava et al., 2016].

Lemma 3.11. For the equations of motion given by (3.95b), the following
results hold.

1. The (centroidal) mass matrix MG has a block diagonal structure, i.e.
:

MG(q
G[B]) =

m13 03×3 03×nJ

03×3 LC(qG[B]) 03×nJ

03×3 03×3 HG(s)

 (3.96)

where m ∈ R is the total mass of the system, LC ∈ R3×3 is the locked
3D inertia matrix of the system expressed in the center of mass and
with the orientation of the absolute frame A and HG(s) ∈ Rn×n is the
centroidal joint mass matrix.
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2. The (centroidal) gravity term GG is independent from the robot state
and has the following structure:

GG =

−mAg
03×1

0nJ×1

 (3.97)

where Ag ∈ R3 is the gravitational acceleration expressed in the frame
A.

3. Assuming that Property 3.4 holds for MB and CB, the (centroidal)
coriolis matrix CG has a block diagonal structure, i.e. :

CG(q
G[B], νG) =

[
03×3 03×(n+3)

03×(n+3) Caj
G (qG[B], νG)

]
(3.98)

where Caj
G (qG[B], νG) ∈ R(3+n)×(3+n) is the centroidal coriolis matrix

for the angular and joint part of the dynamics.

The proof for Lemma 3.11 is provided in Subsection 3.10.2.

3.10 Proofs

3.10.1 Proof of Theorem 3.3

1. First, notice that the time derivative of (3.59) yields:

˙̃ν = T ν̇ + Ṫ ν. (3.99)

Then, the equations of motion (3.60) can be obtained by substituting ν̇
obtained from (3.99) into (3.57), by substituting ν obtained from (3.59)
into (3.57) and by multiplying the obtained equation times T−T .

2. In view of (3.49), i.e.:

k =
1

2
νTM(q)ν,

and of ν̃ = Tν one has :

k =
1

2
ν̃TT−TMT−1ν̃.

From which we obtain that the kinematic energy is also given by:

k =
1

2
ν̃T M̃ν̃, M̃=T−TMT−1.
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3. The simmetry and positive definiteness of M̃ follow from the expression
of the kinetic energy given in the previous step.

4. The condition that Ṁ − 2C is skew-symmetric is equivalent to the
condition that Ṁ = C + CT . So, we will demonstrate that Ṁ − C −
CT = 0(n+6)×(n+6) implies ˙̃M − C̃ − C̃T = 0(n+6)×(n+6). Let us write
˙̃M − C̃ − C̃T using (3.60a) and (3.60b), i.e. :

˙̃M − C̃ − C̃T =

=
d

dt

(
T−T

)
MT−1 + T−T ṀT−1 + T−TM

d

dt

(
T−1

)
︸ ︷︷ ︸

˙̃M

−T−TM
d

dt

(
T−1

)
− T−TCT−1︸ ︷︷ ︸

−C̃

− d

dt

(
T−T

)
MT−1 − T−TCTT−1︸ ︷︷ ︸

−C̃T

We can then write:

˙̃M − C̃ − C̃T =

T−T
(
Ṁ − C − CT

)
T−1 +

+
d

dt

(
T−T

)
MT−1 − d

dt

(
T−T

)
MT−1 +

+T TM
d

dt

(
T−1

)
− T TM

d

dt

(
T−1

)
Using the hypothesis that Ṁ − C − CT = 0(n+6)×(n+6) we can then

conclude that ˙̃M − C̃ − C̃T = 0(n+6)×(n+6).

■

3.10.2 Proof of Lemma 3.11

1. The centroidal mass matrix can be obtained by applying (3.93) to (3.60),
i.e. :

MG = GT
BMB

BTG. (3.100)
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By exploiting the structure of MB and GT
B in (3.54) and (3.94), and

recalling that GX
B = BXT

G
one has:

MG =

[
GX

B 06×nJ

ST
B,G 1nJ×nJ

] [
BI

C FB

F T
B HB

] [
BXG SB,G

06×nJ 1nJ×nJ

]
=(3.101a)

=

[
GX

B
BI

CBXG GX
B
(
BI

CSB,G + FB

)(
ST
B,GBI

C + F T
B

)
BXG HG

]
(3.101b)

with HG = ST
B,GBI

CSB,G + ST
B,GFB + F T

BSB,G +HB .

In view of (3.83) and (3.84), then GX
B
BI

CBXG can be written as the
centroidal composite rigid body inertia, i.e. :

GX
B
BI

CBXG = GI
C =

[
m13×3 03×3

03×3 LC

]
. (3.102)

Using (3.88), it is possible to write SB,G as:

SB,G = −BXGSG,B = −
(
BI

C
)−1

FB. (3.103)

Substituting (3.103) in the off-diagonal terms of (3.101b) it is possible
to show that the off-diagonal terms are equal to 06×n.

2. Exploiting the gravity generalized forces structure given by (3.60c)
and the structure of MG given in (3.96), we can write GG as:

GG = −MG

 Ag
03×1

0n×1

 =

−mAg
03×1

0n×1

 .
3. From the structure of the centroidal dynamics (3.95b), and from the

Newton equationmAc̈−mAg =
∑

L∈L
AfxL we have that the CG matrix

has the following structure:[
03×3 03×(n+3)

CoffDiag
G Caj

G

]
. (3.104)

From the assumption given by Property 3.4 that (ṀB − 2CB)
T =

(2CB −MB) by applying Theorem 3.3 we obtain that:

CG + CT
G =

ṀG

2
. (3.105)
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Plugging the the sparsity patterns (3.104) and (3.96) in the (3.105),
extracting the top left 3× n subblock one obtains that:

03×(n+3) +
(
CoffDiag
G

)T
= 03×(n+3)

from which:
CoffDiag
G = 0(n+3)×3.

■
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Chapter 4

Contact Force-Torques and
Internal Torques Estimation

4.1 Introduction

In this chapter we will discuss the techniques for whole-body external force-
torque and internal torques estimation developed to endow the iCub robot
with torque-control capabilities. The developed techniques solved both the
problems of external force-torque and joint torques, while the problem of
identifying the location of the external force-torque is solved using the dis-
tributed tactile system available on the iCub robot.

This chapter extends the results presented in [Fumagalli et al., 2012, Del
Prete et al., 2016] and [Del Prete et al., 2012] to the whole-body case. A
key idea exploited in this chapter is that the rigid-body dynamics expressed
w.r.t. to the proper sensor acceleration is particularly well suited for force
estimation, as the linear part of the proper sensor acceleration is exactly the
output of an accelerometer mounted at the origin of the link.

The chapter is structured as in the following. A brief state of the art of
how this estimation problems have been solved in the past is presented in
Section 4.2. Section 4.3 describe the different sensors used in the estimation
algorithms. Section 4.4 discuss the estimation of the net force-torque for
a single rigid body. Section 4.5 introduces the algorithm for estimation of
external force-torques of multibody system equipped with internal force-
torques sensors. Section 4.6 discusses the estimation of joint torques, while
Section 4.7 discusses the estimation of six-axis force-torque sensor offsets.
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4.2 State of art

4.2.1 Joint torques estimation

Strain gauge-based direct sensing of joint torques is one of the main meth-
ods used to obtain joint torque feedback [Wu and Paul, 1980, Luh et al.,
1983]. Using this approach, the output shaft of the transmission of the mo-
tor system is modified to include a strain gauge, that is used to measure the
deformation in the shaft due to the torque transmitted by the shaft to the
system. The weak points of this techniques are the additional complexity
added in the manufacturing of the motor group [Randazzo et al., 2011] and
the fact that strain-gauge sensor are quite sensitive to forces that exceed
they sensing range.

Another popular technique to estimate joint torque is the use of so-
called Series Elastic Actuators (SEA) [Paine et al., 2015]. In SEAs, a linear
compliant element (a “spring”) is inserted in series after the transmission
output shaft. Optical or magnetic encoders are mounted before and after the
compliant element to measure its deformation, that is proportional to the
transmitted torques. With respect to strain-gauge based techniques, there
are two main advantages. The first one is to exploit explicitly designed
compliance rather then the implicit compliance of the shaft, and the second
one is to rely on optical or magnetic transducers, that are more robust then
strain gauges. A drawback of SEAs is that while the additional compliance
is convenient for torque measures, it may be a limitation for higher level
controllers, not explicitly design to deal with a compliant system. For this
reason the compliance level of a SEAs unit is tipically a tradeoff between
the softness required for the torque measure and the rigidity required by
classical high level controllers.

An alternative to SEA-based torque estimation is to estimate the torque
transmitted by the trasmission by measuring directly the deformation of the
trasmission, rather then of a specifically designed elastic elements. In [Zhang
et al., 2015] in particular the authors use a pair of encoders to measure
the deformation in a Harmonic Drive. With respect to classical SEA-based
techniques, in the trasmission-based estimation the compliance model of the
trasmission is not simply linear, but it is more complicated.

All the discussed techniques until now (strain gauges mounted on the
shaft, SEAs, trasmission-deformation) rely on specific hardware to measure
the deformation of part of the motor group. Adding this specific hard-
ware can be too costly, or simply unfeasible if a robot was already designed
without any concern for torque control, as it was the case for iCub. An
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alternative is to estimate the joint torque from the motor input voltage or
current, inverting a given model of relationship between the input variable
of the motor and the output torques. This is feasible for low gear ratio
motor groups as in [Wensing et al., 2017], but in classical robot system
equipped with Harmonic Drives the effect of friction effects degrades the
torque estimation quality.

In this thesis we will present a technique for estimating the joint torques
without any motor level sensor, but relying instead on six-axis force-torque
sensor embedded in some of the robot links, as initially explored in Fumagalli
et al. [2012].

4.2.2 External force-torque position estimation

In general, external force-torques are exchanged over a surface at the inter-
face between the robot and the environment, the so-called contact surface.
Estimating the contact surface is important mainly because it can be used
by the robot to produce forces are prevent the contact to be broken.

[Del Prete et al., 2011] considered the problem of estimating the position
of an external contact assuming that the contact generates a pure force (i.e.
null torque) and its effects are sensed with a force/torque sensor embedded
in the robot structure (e.g. at the robot base). The estimation relies on the
classical force transformation principle [Siciliano et al., 2009, Section 3.8.3]
according to which the spatial transformation of a pure force generates a
torque equal to the cross product of the application vector and the applied
force. Estimating the application vector (i.e. the contact location) boils
down to a linear least squares which identifies a unique solution if at least
two non collinear forces. The proposed procedure allows the calibration of a
tactile array. In [Manuelli and Tedrake, 2016] the authors propose to solve
two problems simultaneously: contact location on the one hand and exter-
nal force estimation on the other. To reduce the associated computational
complexity, the two problems are separated to exploit the fact that the force
estimation problem is convex if contact locations are known. The proposed
estimation problem is solved with a particle filter.

In this thesis, we will not presnt techniques for estimating the position
of an external force-torque, as we rely on a distributed tactile system such
as the one present in the iCub robot Maiolino et al. [2013], Del Prete et al.
[2011].
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4.2.3 External force-torque intensity estimation

[De Luca et al., 2006] proposed an approach to estimate the effect of ex-
ternal forces from joint torque measurements. Their approach is based on
the definition of a dynamic quantity, the residual, which acts as a collision
identification signal. Its has two main features: first, it can be computed
from the motor torques and the joint positions and velocities; second, its
dynamics are governed by a linear differential equation and therefore the
residual is zero if no external contact force is applied to the manipulator.
[Magrini et al., 2014] proposed a contact estimation strategy which is based
on the residual concept proposed by [De Luca et al., 2006]. The estimation
of the contact location relies on a Kinect to detect the human posture and
on a robot three dimensional rendering to predict possible contact location
on the robot surfaces. Given the contact location, a least-square estima-
tion is proposed to obtain the contact force magnitude and direction via
a Moore-Penrose pseudo-inverse computation. Only the force components
which do not lie on null space of the contact Jacobian can be estimated and
this is a limitation of the proposed approach. [Jaeheung Park and Khatib,
2005] considered the problem of estimating contact forces assuming a spring
contact model for the external forces. A classical task-space inverse dynam-
ics controllers is adopted to control contact forces. The proposed estimation
technique, named Active Observer (AOB), consists of a Kalman filter for
estimating the difference between the input command force and measured
output force. [Petrovskaya et al., 2007] extended the AOB estimator in
[Jaeheung Park and Khatib, 2005] to include the geometric model of the
interaction. In particular, the proposed approach defines a probabilistic
model of the robot and the environment. The estimation strategy aims at
estimating the position of the contact point on the robot, while maintaining
constant the model of the environment. Estimation is limited to the single
contact case even if experiments include some multi-contact scenarios han-
dled with compliant exploration strategy described by [Jaeheung Park and
Khatib, 2005].

In this thesis we present techniques for estimating the intensity of a
group of external force-torque in the whole-body case relying on a distributed
tactile system and on six-axis force-torque sensor embedded in some of the
robot links, as initially explored in [Del Prete et al., 2012]. As we assume
that no joint torque measurement are available, we cannot use any residual-
based technique.
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4.3 Sensor Models

In the previous chapter, we presented the theoretical background underling
the dynamics of multibody systems. In this section we will do a brief review
of all the sensors that will be used in this and in the following chapters, and
their relationship to the quantities that we defined in the previous chapters.
For a detailed description of the underling physical principles, the interested
reader is referred to [Doebelin, 2003, Chapter 4].

4.3.1 Joint Sensors

Six Axis Force Torque Sensor

In the following, we will always model a six axis force torque sensor as a
fixed joint, that connects the two sides of the sensors. This choice has the
convenient condition that all the inertial information necessary to describe
the sensor are still stored in the model description introduced in Chapter 3.
Under this assumption, to fully describe a force-torque sensor we need the
following information: the fixed joint of which the force-torque sensor mea-
sure the transmitted force-torque, the frame in which the force-torque sen-
sors is reporting its measure, and the applied body on which the measured
force-torque is assumed to be applied. For example, if two bodies B and D
are rigidly attached by a fixed joint, and BfB,D is the force-torque applied
by B on D, the measure force-torque is given by:

yFT = σB,DSX
B
BfB,D (4.1)

where the constant σB,D ∈ {−1, 1} accounts for the direction of the mea-
sured force-torque.

Remark 4.1. In the next chapters, we will assume that joint-related quan-
tities such as joint positions s, joint velocities ṡ are measured. As the defi-
nition of these quantities is rather unambiguous given a multibody definition
as in Chapter 3, we will not discuss their definition in detail.

4.3.2 Link Sensors

All the sensors in this subsection are assumed to be rigidly connected to a
body, whose frame is indicated with B. Furthermore the sensors are assumed
to be mounted such that they report their measurement in a frame S, rigidly
attached to the body, while A indicates as usual an inertial frame.
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3D Accelerometer

A 3D accelerometer is a sensor that measures the linear part of the proper
sensor acceleration of frame S, as described in Subsection 2.4.4:

yacc =
SRA

AöS − SRA
Ag (4.2)

Note that this definition is actually independent from the assumed inertial
frame A.

3D Gyroscope

A 3D gyroscope is a sensor that measures the 3D angular velocity of the
sensor frame S:

ygyr =
SωA,S = (ART

S
AṘS)

∨ (4.3)

This measurement can identified simply as the angular part of the left-
trivialized velocity of the sensor frame S w.r.t. to an inertial frame A:

ygyr =
[
03×3 13

]
SvA,S = SωA,S . (4.4)

3D Magnetometer

The 3D magnetometer is a sensor that measures the magnetic field intensity
in the sensor frame. In typical application scenario, it is assume that the
measured magnetic field is the earth magnetic field Ab ∈ R3, a quantity that
can be assumed constant in the absolute frame A:

ymag =
SRA

Ab = SRB
BRA

Ab. (4.5)

Inertial Measurement Unit

An Inertial Measurement Unit is a compound sensor in which a gyroscope,
an accelerometer and possibly a magnetometer are packed together to es-
timate the orientation of the sensor frame w.r.t. an arbitrary earth-fixed
inertial frame AIMU. The output of the IMU estimation is then an orienta-
tion, that can be expressed using Euler Angles, Quaternion or some other
representation of SO(3). Assuming that we consider the output of the IMU
to be directly a rotation matrix, we have:

yIMU = AIMURS = AIMURA
ARB

BRS (4.6)

76



It is important to stress that in general the inertial frame AIMU used by
the IMU may be different from the one used in the rest of the analysis.
The constant AIMURA must be properly taken in account when designing
algorithms that use the output of one or more IMUs.

Remark 4.2. The force-torque sensors, the gyroscope and accelerometer op-
erating principle is actually always based on deformation or vibration: while
this may seems a violation of the basic assumption of rigid body systems, the
point is that the dynamics of such part of the systems is usually negligible
w.r.t. the dynamics of the multibody system. For example, for a humanoid
robot with a total mass of the order 102 Kg where even smallest links have a
mass in the order of 10−2 Kg, the proof mass of an accelerometers sensors
can be in the order of 10−10 Kg [Andrejašic, 2008].

4.4 Estimation of the net force-torque

4.4.1 Example: rigid body external force-torque estimation

Imagine that you have a rigid body B attached to a bigger structure through
a force-torque sensor and subject to an external force-torque due to the
interaction with the environment, as depicted in Figure 4.1. Assuming for
simplicity that the force-torque sensor returns the constraint force in the
body frame B, we have from the rigid body dynamics of the body expressed
w.r.t. proper sensor acceleration:

BMBα
g
A,B +

[
03×1

BωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
= Bf

x + Bf
s (4.7)

So, assuming a perfect model and the knowledge of the inertial param-
eters of the body, and measurements of αg

A,B,
BωA,B and Bf

s at a given
instant, we can estimate the external force-torque Bf

x as:

Bf
x = BMBα

g
A,B +

[
03×1

BωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
− Bf

s (4.8)

Conveniently, in this formula the termMαg
A,B+

[
03×1

BωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
is the only one that depends on acceleration, velocity and the inertial pa-
rameters of the body. For convenience, we will indicate this term as:

BϕB(
Bαg

A,B,
BωA,B) := BMBα

g
A,B +

[
03×1

ωA,B

]
×̄∗

BMB

[
03×1

BωA,B

]
(4.9)
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B

Bf
x

Bf
s

Fig. 4.1 Graphical rappresentation of equation (4.10).

In the following we will omit the dependency on the proper sensor accel-
eration and on the body angular velocity and simply indicate this as BϕB.
An interpretation for the physical meaning of BϕB is that is the sum of all
the force-torque acting on body, both the external ones and the one due
to interaction with the other bodies in the system, minus the gravitational
force-torque. Even if this term does not include the force-torque due to grav-
ity, to simplify the nomenclature in the following will call it net force-torque
acting on the body B.

Using the definition of net force-torque, the external force-torque esti-
mation can be compactly expressed as:

Bf
x = BϕB − Bf

s (4.10)

The net force-torque Bϕ
B of body B depends on the inertial parameters

of the body B, the proper sensor acceleration and on the body angular ve-
locity. In this chapter, we assume that the inertial parameters of the body
are perfectly known. Techniques to estimate those parameters are discussed
in Chapter 6 and Chapter 7.

If these inertial parameters are assumed to known, then the net force-
torque estimation boils down to estimation of the proper sensor acceleration
αg
A,B and on the body angular velocity BωA,B.
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4.4.2 Sensor based estimation

Beside the inertial parameters, to compute the net force-torque it is nec-
essary to estimate the proper sensor acceleration αg

A,B ∈ R6 and the body

angular velocity BωA,B ∈ R3. In an ideal case, we would want to have
a linear accelerometer, and angular accelerometer and a gyroscope rigidly
mounted on the body, all reporting their measurements directly in the body
frame B. However, typically this is not the case. Firstly there could be
an offset between the sensor frame S and the body frame B. Secondly, an-
gular accelerometers are not tipically available as off-the-shelf component,
and so the information on the angular acceleration is typically obtained by
numerical derivative of the gyroscope output. Another strategy used to deal
with the absence of direct angular acceleration feedback is to simply ignore
the angular acceleration contribution to the net force-torque, assuming its
influence in the overall dynamics to be negligible.

Assuming that one of the above strategies was used to compute Sω̇A,S ,
we will have a proper sensor acceleration αg

A,S and an angular velocity ex-

pressed SωA,S , and we want to transform them in the frame B, in which the
rest of the model information (such as inertial parameters and joint infor-
mation) is expressed. From the definition of sensor acceleration and from
the propagation rules for mixed acceleration (3.6) we have that:

BωA,B = BRS
SωA,B, (4.11a)

αg
A,B = BXSα

g
A,S +

[
Bω∧

A,B
Bω∧

A,B
BoS

03×1

]
. (4.11b)

4.4.3 Kinematic based estimation

In humanoid robotics, it is actually unusual to have more then one IMU
mounted on the robot. Typically only one IMU is mounted on one central
link of the robot, and information on the angular velocity and proper sensor
acceleration of all the other links can be obtained through kinematic prop-
agation, using information about joint velocity ṡ and acceleration s̈. This
information can be obtained thought high-frequency numerical derivation of
high-precision joint encoders.

Under this assumption, we can compute recursively the angular velocity
and proper sensor acceleration, considering the base link B to be the one in
which the IMU is available. In particular we assume that we can compute
αg
A,B and BωA,B for the link containing the IMU using equations (4.11).

Then, given an arbitrary link L, its sensor proper acceleration and body
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angular velocity can be computed from (3.7) and (3.4a):

LωA,L = LRB(s)
BωA,B + LωB,L(s, ṡ),

αg
A,L = LXB(s)α

g
A,B + αB,L(s, ṡ, s̈)+ (4.12)[

LRB(s)
[
2(BωA,B × B ȯL(s, ṡ)) +

BωA,B × (BωA,B × BoL(s))
](

LRB(s)
BωA,B

)∧ LωB,L(s, ṡ)

]
=(4.13)

= LXB(s)α
g
A,B + αB,L(s, ṡ, s̈)+ (4.14)[

2LRB(s)
Bω∧

A,B 03×3

03×3
LRB(s)

Bω∧
A,B

]
L[B]vL,B+ (4.15)[

LRB(s)[
BωA,B × (BωA,B × BoL(s))]

03×1

]
where LRB(s),

LXB(s),
LωB,L(s, ṡ),

B ȯL(s, (̇s)) and αB,L(s, ṡ, s̈) are given by
the relative forward kinematics.

4.4.4 Hybrid estimation

It only a nIMU out of nL links of the of the robot are equipped with IMUs,
it is possible to mix the two approaches by splitting the multibody system in
nIMU submodels, each of it containing several connected links, of which only
one is equipped with an IMU . For all other links in the subgraph, the net
force-torque of each link can be computed by propagating the the kinematic
information using the joint information, using the equations presented in
the previous subsection.

4.5 Multibody External Force-Torque Estimation

4.5.1 Force-Torque Sensors Induced Submodel Decomposi-
tion

In this section we consider the generalization of single-body external force-
torque estimation depicted in Fig 4.1 to the multibody case, depicted in
Figure 4.2.

For exploiting the measures of internal force-torque sensors, it is con-
venient to consider independently each submodel induced by cutting the
multibody-model along the fixed joints that contain an internal force-torque
sensor. If we have n force-torque sensors, we can define n + 1 submodels.
We indicate with M the set of different submodels, with sm ∈ M a specific
submodel, and with Lsm the set of the links belonging to submodel sm.
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Furthermore, for each link L ∈ Lsm we indicate with ℶsm(L) the set
of links that are connected with L in the full model, but that belong to a
different submodel, i.e.:

ℶsm(L) := {D ∈ L | {L,D} ∈ J ∧D /∈ Lsm} (4.16)

4.5.2 External Force-Torque Estimation

In the following, we will use this assumptions.

Assumption 4.1. The contact surface and the link to which it belongs of
the external force-torques are both known, either from a-priori assumptions
or from the measurements from a distributed tactile skin. The a-priori as-
sumptions or the skin do not provide information on the intensity of the
external force-torque.

Assumption 4.2. The net force-torque LϕL of each link is assumed to be
known, estimated using one of the techniques described in Section 4.4.

Property 4.1. Given a link L ∈ L the relation between the net force-torque

LϕL, the net external force-torque Lf
x
B and the joint internal force-torques is

given by:

LϕL = Lf
x
L +

∑
D∈ℵ(L)

LfD,L. (4.17)

This equation is just a generalization of (4.7) to all the forces interacting
with a given link in a multibody system.

A similar result holds for the multibody system as an whole, as stated
in the next Proposition.

Theorem 4.1. Given a multibody system in which the external force-torques
are acting on only a subset of the links C ⊆ L, the sum of all the net force-
torques of each link is equal to the sum of all the external force-torques acting
on the multibody system, provided that all quantities are transformed in a
common frame B, i.e. :∑

L∈L
BX

L
LϕL =

∑
L∈C

BX
L
Lf

x
L. (4.18)

The proof of this theorem is given in Subsection 4.8.1.
With respect to the single body case using Theorem 4.1 we can only

estimate the sum of all the external force-torque acting on the multibody
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Fig. 4.2 Example of a multibody system with internal six-axis force-torque
sensors. Measured force-torques are indicated in green, while unknown con-
tact force-torques are drawn in red. There are n = 5 force-torque sensor in
the system, that is then decomposed in n + 1 = 6 submodels for external
force-torque estimation.
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system. However it is typically of interest to estimate the intensity of each
contact force-torque independently from the others, for example for force
control. On the other hand, we need to use in some way the information
coming from the force-torque sensor, that measure internal force-torque, to
estimate external force-torque.

A way of obtaining an equation similar to Theorem 4.1 that contains
the available sensors measures, is to split the multibody model in several
submodels, along the joints in which force-torque sensors are mounted, as
described in Subsection 4.5.1. We can then apply Theorem 4.1 to each
submodel sm ∈ M, that we can rewrite as:∑

L∈Lsm

BX
L
LϕL =

∑
L∈(C∩Lsm)

BX
L
Lf

x
L +

∑
L∈Lsm

∑
D∈ℶsm(L)

BX
D
DfD,L. (4.19)

The term
∑

L∈Lsm

∑
D∈ℶsm(L) BX

D
DfD,L represents the effect on the

submodel of the force-torques transmitted by the six-axis sensors. For a
given force-torque sensor embedded in the joint {D,L} ∈ J, the value of

DfD,L can obtained from the sensor measurement yFT by inverting equa-
tion (4.1):

DfD,L = DX
SσD,LyFT. (4.20)

In the rest of the chapter we will assume that the joint force-torque

Df{D,L} is always available for each joint in which a six-axis force-torque
sensors is mounted, without manually indicating its value from equation
(4.20).

Given a submodel sm ∈ M, if we assume that on the submodel the exter-
nal force-torques are acting only on a single link called C (i.e. (C ∩ Lsm) =
{C}) then this external force-torque can be computed exactly from (4.19)
as:

C f
x
C =

∑
L∈Lsm

CX
L
LϕL −

∑
L∈Lsm

∑
D∈ℶsm(L)

CX
D
DfD,L. (4.21)

4.5.3 Estimation of external forces acting on multiple link in
a submodel

If the external forces are acting on more then one link, the estimation prob-
lem given by (4.19) is indeterminate, as the number of unknowns is greater
then 6, the number of given equations. A possible solution in this case is to
solve the equation in the least-square sense as proposed in Del Prete et al.
[2012], but in this case there is no guarantee that the resulting estimated
force-torques are the “real” ones. In this sense, the least-square estimation
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should be seen as fallback solution, rather then a sound estimation tech-
nique.

4.6 Joint Torques Estimation

Once we obtained a set of external force-torques, a strictly related problem
is how to estimate the internal torques, i.e. the component of the inter-link
forces acting along the degree of freedom of the joints. The joint torques
estimation is crucial because this quantity is directly related to the motors
that are actuating those joints, and the input to the motors is in the end
the ultimate control input available in robots.

We have that the torques of the joint connecting links E and F are just
the projection of the joint force-torque on the joint motion subspace:

τ{E,F} =
〈
F sE,F , F fE,F

〉
=
〈
EsF,E ,EfF,E

〉
. (4.22)

The joint torque estimation problem is then solved if an estimation of the
joint internal force-torque is available. The internal force-torque estimation
problem has a trivial solution using the following property.

Definition 4.1. A set of estimated net force-torques LϕL, L ∈ L and of
external force-torques Lf

x
L, L ∈ L is consistent if they follow equation (4.18).

Property 4.2. The outcome of the estimation of force-torques algorithm
presented in Section 4.5 is always consistent, as defined in Definition 4.1.

Given a set of net force-torques for each body and a set of consistent
external force-torques, all the internal joint force-torques are totally de-
termined. In particular, the internal force-torque can be written in two
equivalent ways:

F fE,F = −EfF,E (4.23a)

F fE,F =
∑

L∈γE(F )

FX
L (LϕL + Lf

x
L) (4.23b)

EfF,E =
∑

L∈γF (E)

EX
L (LϕL + Lf

x
L) (4.23c)

where γE(F ) is the set of the links belonging to the subtree starting at link
F , given E as a base link, defined originally in Definition 3.9.

The two sums are equivalent thanks to the fact the the net force-torques
and the external force-torques are consistent.
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Combining equations (4.23) and (4.22) is is possible to estimate the joint
torques using net force-torques as estimated in Section 4.4 and external
force-torques estimated in Section 4.5 :

τ{E,F} =

〈
F sE,F ,

∑
L∈γE(F )

FX
L (LϕL + Lf

x
L)

〉
= (4.24a)

=

〈
EsF,E ,

∑
L∈γF (E)

EX
L (LϕL + Lf

x
L)

〉
. (4.24b)

Note that (4.24) is just an alternative formulation for the line of (3.64)
relative to τ{E,F}, and it is usually computed using the algorithms for com-
puting Inverse Dynamics [Featherstone, 2008].

Relying on (4.24) for internal force-torque estimation may seem risky, as
it create a dependency of the torques on the net force-torque and external
force-torque of the link of all the robot, and this could be be subject to
accumulation error. In the next theorem we see how most of the torques
computed as in (4.24) are actually function of a much more “local set of
measurements”.

Theorem 4.2. Assume that:

� (E,F ) is a 1-dof joint,

� (G,H) is a fixed joint that contains a force-torque sensor,

� F is closer to G then E (i.e. G ∈ γE(F )).

� the path connecting (E,F ) to (G,H) is branchless,

� the path connecting (E,F ) to (G,H) is free of external force-torques
and other force-torque sensors,

� E, F and G belong to the submodel sm ∈ M.

Then τ{E,F} given by (4.24) can be equivalently written as:

τ{E,F} =

〈
F sE,F ,

∑
γE(F )∩Lsm

FX
L
LϕL + FX

G
GfG,H

〉
. (4.25)

Remark 4.3. This means that the torque estimate is just a linear function
of the force-torque sensor measure and of the net force-torque of a a limited
set of links, the one connecting the joint {E,F} to the joint {G,H}. This
ensure that any error in all the other force-torque sensors measurements or
in the estimation of net force-torque of all the other links in the robot will
not influence the estimation of τ{E,F}.
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G
H

Fig. 4.3 Example of torque estimation.

4.6.1 Example of torque estimation

Let’s focus on the upper part of the model depicted in Figure 4.2, depicted
in 4.3.

As explained in this section, the joint torques can simply be estimated by
(4.24), i.e. inverse dynamics, once a consistent set of net force-torques and
external force-torques have been estimated. However, it is interesting to see
on which measurements the estimate of the joint {E,F} actually depends
on, using Theorem 4.2. In this case we have that Lsm = {D,E, F,G} and
γE(F ) ∩ Lsm = {F,G}. Writing (4.25) in this specific case we have:

τ{E,F} =
〈
F sE,F , FϕF + FX

G
GϕG + FX

G
GfG,H

〉
, (4.26)

where GfG,H is obtained directly from the force-torque sensor measurements.
In the end the estimates of the joint τ{E,F} depends only on the net force-
torque of links F and G (FϕF ,GϕG), on the measurement of the position of
joint {F,G} and its geometrical model (FX

G) and on the measurement of
the nearby force-torque sensor mounted on joint {G,H} (GfG,H). Then, all
other estimation errors that could be present on the robot do not affect the
estimate of τ{E,F}, even if they are present in equation (4.24).
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4.7 Six-Axis Force-Torque Sensors Model-based Off-
set Calibration

As will be described in detail in 5, the six-axis force-torque sensors bias needs
to be determined during the startup of the system. For this reason, we need
to have a way find the expected value of the measured sensor assuming the
perfect knowledge of the model and some additional assumptions on the
external force-torque.

4.7.1 Offset Calibration with the external forces acting on a
Single Link

Assumption 4.3. During force-torque bias sensor calibration, we assume
that only one external force-torque is acting on the multibody system. We
call C the link on which the unique external 6D force is acting.

Remark 4.4. Assumption 4.3 can be automatically checked using a dis-
tributed tactile system.

If only one external force-torque is acting on the system, its value can
be computed from Newton-Euler equations, using Theorem 4.1:

fxC =
∑
L∈L

BX
L
LϕL (4.27)

Once the unique external force-torque has been determined using, joint
force-torque for each joint can be computed using the equations in (4.23).
In particular only one of the two equations (4.23c)-(4.23b) will contain the
term related to external force-torque. By choosing the other expression for
all the joints, the joint force-torque can be written as a function of the net
force-torques. In particular given a joint {E,F}, using C as the base assume
that λC(F ) = E. Then γE(F ) = γC(F ) and:

F fE,F =
∑

L∈γC(E)

FX
LϕL. (4.28)
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4.8 Proofs

4.8.1 Proof of Theorem 4.1

We can sum the equations given by (4.17) for each link L by multiplyng
them for BX

L, resulting in:

∑
L∈L

BX
L
LϕL =

∑
L∈L

BX
L

Lf
x
L +

∑
D∈ℵ(L)

LfD,L

 =

=
∑
L∈L

BX
L
Lf

x
L +

∑
L∈L

∑
D∈ℵ(L)

BfD,L. (4.29)

Focusing on the last addend of the right term of the equation we have:∑
L∈L

∑
D∈ℵ(L)

BfD,L =

=
∑

{E,F}∈J
BfE,F + BfF,E =

=
∑

{E,F}∈J
BfE,F − BfE,F = 06×1 (4.30)

Plugging (4.30) in (4.29) one obtains (4.18).
■

4.8.2 Proof of Theorem 4.2

From (4.24) we have:

τ{E,F} =
〈
F sE,F , F fE,F

〉
=

〈
F sE,F ,

∑
L∈γE(F )

FX
L (LϕL + Lf

x
L)

〉

From (4.23b) instead we have that:

GfG,H =
∑

L∈γG(H)

GX
L (LϕL + Lf

x
L) , (4.31)

and that:
γE(F ) = (γE(F ) ∩ Lsm) ∪ γG(H).
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We can then decompose the expression of F fE,F as:

F fE,F =
∑

L∈γE(F )

FX
L (LϕL + Lf

x
L) =

=
∑

L∈γE(F )∩Lsm

FX
L (LϕL + Lf

x
L) +

∑
L∈γG(H)

(
FX

L
LϕL + Lf

x
L

)
=

=
∑

L∈γE(F )∩Lsm

FX
L (LϕL) + FX

G
GfG,H ,

where we made use of the assumption that no external force-torques are
present on the links in γE(F ) ∩ Lsm and the expression of GfG,H given in
(4.31). Substituting this expression of F fE,F in (4.24) gives the result. ■
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Chapter 5

Six Axis Force Torque
Sensors In Situ Calibration

5.1 Introduction

The importance of sensors in a control loop goes without saying. Measure-
ment devices, however, can seldom be used sine die without being subject
to periodic calibration procedures.

This is in particularly true for six-axis force-torque sensors, whose cali-
bration procedures may require to move the sensor from the hosting system
to specialized laboratories, which are equipped with the tools for performing
the calibration of the measuring device. This chapter presents techniques
to calibrate strain gauges six-axis force-torque sensors in situ, i.e. without
the need of removing the sensor from the hosting system, by exploiting the
structure of rigid body dynamics.

Calibration of six-axis force-torque sensors has long attracted the atten-
tion of the robotic community [Braun and Wörn, 2011]. The commonly
used model for predicting the force-torque from the raw measurements of
the sensor is an affine model. This model is sufficiently accurate since these
sensors are mechanically designed and mounted so that the strain deforma-
tion is (locally) linear with respect to the applied forces and torques. Then,
the calibration of the sensor aims at determining the two components of this
model, i.e. a six-by-six matrix and a six element vector. These two com-
ponents are usually referred to as the sensor’s calibration matrix and offset,
respectively. In standard operating conditions, relevant changes in the cal-
ibration matrix may occur in months. As a matter of fact, manufacturers
such as ATI [ATI Industrial Automation, 2014] and Weiss Robotics [Weiss
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Robotics, 2013] recommend to calibrate force-torque sensors at least once a
year. Preponderant changes in the sensor’s offset can occur in hours, how-
ever, and this in general requires to estimate the offset before using the
sensor. The offset models the sensitivity of the semiconductor strain gauges
with respect to temperature.

Classical techniques for determining the offset of a force-torque sensor
exploit the aforementioned affine model between the raw measurements and
an a-priori knowledge of the load attached to the sensor, as described in
Section 4.7. In particular, if no load is applied to the measuring device, the
output of the sensor corresponds to the sensor’s offset. This offset identifi-
cation procedure, however, cannot be always performed since it may require
to take the hosting system apart in order to unload the force-torque sen-
sor. Another widely used technique for offset identification is to find two
sensor’s orientations that induce equal and opposite loads with respect to
the sensor. Then, by summing up the raw measurements associated with
these two orientations, one can estimate the sensor’s offset. The main draw-
back of this technique is that the positioning of the sensor at these opposite
configurations may require to move the hosting system beyond its operating
domain.

Assuming a preidentified offset, non-in situ identification of the cali-
bration matrix is classically performed by exerting on the sensor a set of
force-torques known a priori. This usually requires to place sample masses
at precise relative positions with respect to the sensor. Then, by compar-
ing the known gravitational force-torque with that measured by the sensor,
one can apply linear least square techniques to identify the sensor’s cali-
bration matrix. For accurate positioning of the sample masses, the use of
robotic positioning devices has also been proposed in the specialized litera-
ture [Uchiyama et al., 1991] [Watson and Drake, 1975].

To reduce the number of sample masses, one can apply constrained
forces, e.g. constant norm forces, to the measuring device. Then these
constrains can be exploited during the computations for identifying the cal-
ibration matrix [Voyles et al., 1997]. To avoid the use of added masses, one
can use a supplementary already-calibrated measuring device that measures
the force-torque exerted on the sensors [Faber et al., 2012] [Oddo et al., 2007].
On one hand, this calibration technique avoids the problem of precise posi-
tioning of the added sample masses. On the other hand, the supplementary
sensor may not always be available. All above techniques, however, cannot
be performed in situ, thus being usually time consuming and expensive.

To the best of our knowledge, the first in situ calibration method for
force-torque sensors was proposed in [Shimano and Roth, 1977]. But this
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FT Sensor

FT Sensor

Accelerometer

Fig. 5.1 iCub’s leg with the two force/torque sensors and an additional
accelerometer.

92



method exploits the topology of a specific kind of manipulators, which are
equipped with joint torque sensors then leveraged during the estimation. A
recent result [Gong et al., 2013] proposes another in situ calibration tech-
nique for six-axis force-torque sensors. The technical soundness of this work,
however, is not clear to us. In fact, we show that a necessary condition
for identifying the calibration matrix is to take measurements for at least
three different added masses, and this requirement was not met by the al-
gorithm [Gong et al., 2013]. Another in situ calibration technique for force-
torque sensors can be found in [Roozbahani et al., 2013]. But the use of
supplementary already-calibrated force-torque/pressure sensors impairs this
technique for the reasons we have discussed before.

This chapter presents in situ calibration techniques for six-axis force-
torque sensors using accelerometer measurements. The proposed method
exploits the geometry induced by the affine model between the raw measure-
ments and the gravitational force-torque applied to the sensor. In particular,
it relies upon the properties that all gravitational raw measurements belong
to a three-dimensional space, and that in this space they form an ellipsoid.
We first propose a method for estimating the sensor’s offset, and then a pro-
cedure for identifying the calibration matrix. The latter is independent from
the former, but requires to add sample masses to the rigid body attached
to the sensor. Both methods are independent from the inertial character-
istics of the rigid body attached to the sensor. The proposed algorithms
are validated on the iCub platform by calibrating two force-torque sensors
embedded in the robot leg.

The simplified notation used in this chapter is listed in the following box.
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Notation used in Chapter 5
f := Sf ∈ R6 Force-Torque measured by the Force-

Torque sensor.
C ∈ R6×6 Calibration matrix.
r ∈ R6 Raw measurement of the straing gauges.
b ∈ R6 Offset of the FT sensor, in the raw mea-

surement space.
m ∈ R Mass of the body attached to the FT sen-

sor.
c := Sc ∈ R3 Center of mass, expressed w.r.t. to sensor

frame S.
g := Ag ∈ R3 Gravitation acceleration, expressed w.r.t.

to inertial frame A.
g := SRA

Ag ∈ R3 Gravitation acceleration, expressed w.r.t.
to sensor frame S.


The chapter is organized as follows. Section 5.2 presents the problem

statement with the assumptions. Section 5.3 details the proposed method for
the calibration of six-axis force-torque sensors. Validations of the approach
are presented in Section 5.4.

5.2 Problem statement and assumptions

We assume that the model for predicting the force-torque (also called wrench)
from the raw measurements is an affine model, i.e.

f = C(r − b), (5.1)

where f ∈ R6 is the wrench exerted on the sensor expressed in the sensor’s
frame, r ∈ R6 is the raw output of the sensor, C ∈ R6×6 is the invertible
calibration matrix, and b ∈ R6 is the sensor’s bias or offset. The calibration
matrix and the offset are assumed to be constant.

We assume that the sensor is attached to a rigid body of (constant) mass
m ∈ R+ and with a center of mass whose position w.r.t. the sensor frame
S is characterized the vector c ∈ R3.

The gravity 3D force applied to the body is given by

mḡ = mART
Bg, (5.2)
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with ḡ, g ∈ R3 the gravity acceleration expressed w.r.t. the inertial and
sensor frame, respectively. The gravity acceleration ḡ is constant, so the
vector g does not have a constant direction, but has a constant norm.

Finally, we make the following main assumption.

Assumption 5.1. The raw measurements r are taken for static configu-
rations of the rigid body attached to the sensor, i.e. the angular velocity
of the frame S is always zero. Also, the gravity acceleration g is measured
by an accelerometer installed on the rigid body. Furthermore, no external
force-torque, but the gravity force, acts on the rigid body. Hence

f = M(m, c)g, (5.2a)

M(m, c) := m

(
13
c×

)
. (5.2b)

Remark 5.1. We implicitly assume that the accelerometer frame is aligned
with the force-torque sensor frame. This is a convenient, but non necessary,
assumption. In fact, if the relative rotation between the sensor frame S and
the accelerometer frame is unknown, it suffices to consider the accelerometer
frame as the sensor frame S.

Under the above assumptions, what follows proposes a new method for
estimating the sensor’s offset o and for identifying the sensor’s calibration
matrix C without the need of removing the sensor from the hosting system.

5.3 In Situ Calibration Methods

The proposed methods rely on the the geometry induced by the models (5.3)
and (5.1).

5.3.1 The geometry of the raw measurements

First, observe that
rank(M) = 3.

As a consequence, all wrenches f belong to the three-dimensional subspace
given by the span (M) ⊂ R6. In view of this, we can state the following
lemma.
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Lemma 5.1. All raw measurements r belong to a three dimensional affine
space, i.e. there exist a point rm ∈ R6, an orthonormal basis U1 ∈ R6×3,
and for each r ∈ R6 a vector λ ∈ R3 such that

r = rm + U1λ. (5.3)

Also, the vector λ belongs to a three-dimensional ellipsoid.

Proof. From (5.1) and (5.3), one has:

r = |g|C−1Mĝ + b, (5.4)

where ĝ := g/|g|. The matrix C−1M ∈ R6×3 is of rank 3. Consequently,
all raw measurements r belong to an affine three-dimensional space defined
by the point b and the basis of span (C−1M). Now, define P ∈ R3×6 as the
projector of r onto span (C−1M). Then, the projection p ∈ R3 of r onto
this span is given by

p = Pr = |g|PC−1Mĝ + Pb. (5.5)

By considering all possible orientations of the sensor’s frame S, then the
gravity direction ĝ spans the unit sphere. Consequently, the vector p be-
longs to the span of the unit sphere applied to the linear transformation
|g|PC−1M , i.e. an ellipsoid centered at the point Po. This in turn implies
that when decomposing the vector r as in (5.3), the vector λ necessarily
belongs to a three-dimensional ellipsoid.

To provide the reader with a better comprehension of the above lemma,
assume that r ∈ R3 and that the affine subspace is a plane, i.e. a two-
dimensional space. As a consequence, all measurements belong to an ellipse
lying on this plane – see Figure 5.2. Observe also that given a point λ ∈
R2 on the plane and expressed w.r.t. the basis U1, the relationship (5.3)
provides with the components of this point in the space R3. By leveraging
on the above lemma, the next two sections propose a method to estimate
the sensor’s offset and calibration matrix.

5.3.2 Method for estimating the sensor’s offset

Assume that one is given with a set of measurements (ri, gi) with i ∈
{1 · · ·N} corresponding to several body’s static orientations. Then, let us
show how we can obtain the basis (rm, U1) in (5.3) associated with all mea-
surements ri, and how this basis can be used for estimating the offset o.
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Fig. 5.2 Example when r ∈ R3 and U1 = (U1
1 , U

2
1 ) ∈ R3×2.
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Observe that the point rm can be chosen as any point that belongs to
the affine space. Then, a noise-robust choice for this point is given by the
mean value of the measurements ri,

rm =
1

N

N∑
i=1

ri. (5.6)

An orthonormal basis U1 can be then obtained by applying the singular
value decomposition on the matrix resulting from the difference between all
measurements and rm, i.e.

(r̃1, · · · , r̃n) = USV ⊤, (5.7)

where
r̃i := ri − rm,

and U ∈ R6×6, S ∈ R6×N , V ∈ RN×N are the (classical) matrices obtained
from the singular value decomposition. Note that only the first three ele-
ments on the diagonal of S are (significantly) different from zero since all
measurements ri belong to a three dimensional subspace. Consequently, (an
estimate of) the orthonormal basis U1 is given by the first three columns of
the matrix U .

With (rm, U1) in hand, the offset o can be easily estimated. First, note
that equation (5.3) holds for all points belonging to the three dimensional
space. Hence, it holds also for the offset o being the center of the ellipsoid
(see Figure 5.2), i.e.

o = rm + U1λb. (5.8)

Then to estimate the offset o belonging to R6, we can estimate the coordi-
nates λb in the subspace R3. In view of U⊤

1 U1 = 13, multiplying the above
equation times U⊤

1 yields

λb := U⊤
1 (o− rm). (5.9)

Now, by subtracting rm from (5.4) and multiplying the resulting equation
by U⊤

1 , one has
U⊤
1 r̃i = Kgi + λb, (5.10)

where
K := U⊤

1 C
−1M and λb
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are the unknowns in the above equation. In view of (2.9) the equation (5.10)
can be written by stacking the obtained vectors for all measurements as

r̄ = Γx, (5.10a)

r̄ :=
(
r̃⊤1 U1, · · · , r̃⊤NU1

)⊤ ∈ R3N×1, (5.10b)

Γ :=


g⊤1 ⊗ 13, 13

.

.
g⊤N ⊗ 13, 13

 ∈ R3N×12, (5.10c)

x :=

(
vec(K)
λb

)
∈ R12×1. (5.10d)

Solving the equation (5.10a) for the unknown x in the least-square sense
provides with an estimate λ̂o ∈ R3 of λb. To obtain the coordinates of this
point w.r.t. the six-dimensional space, i.e. the raw measurements space, we
apply the transformation (5.8) as follows:

b̂ = rm + U1λ̂b.

5.3.3 Method for estimating the sensor’s calibration matrix

In this section, we assume no offset, i.e. o = 0, which means that this
offset has already been estimated by using one of the existing methods in
the literature or by using the method described in the previous section.
Consequently, the relationship between the set of measurements (ri, gi) and
the body’s inertial characteristics, i.e. mass and center of mass, is given by

Cri =Mgi.

In addition, we also assume that the body’s inertial characteristics can be
modified by adding sample masses at specific relative positions w.r.t. the
sensor frame S. As a consequence, the matrix M in the above equation is
replaced by Mj , i.e.

Crji =Mjg
j
i , (5.11)

where j indicates that new inertial characteristics have been obtained by
adding sample masses. Observe that Mj can then be decomposed as follows

Mj := Mb + M j
a

= m

(
13
c×

)
+mj

a

(
13
cja×

)
,
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where (mj
a, c

j
a) are the mass and the vector of the center of mass, expressed

w.r.t. the sensor frame S, of the added mass. In the above equation, Mb is
unknown but M j

a is assumed to be known.
In light of the above, we assume to be given with several data sets

Rj := (rj1, · · · , rjNj
) ∈ R6×Nj , (5.11a)

Gj := (gj1, · · · , gjNj
) ∈ R3×Nj , (5.11b)

associated with ND different (mj
a, c

j
a). Given (5.11) and (5.12), the mea-

surements associated with the jth data set can be compactly written as

CRj −MbGj =M j
aGj .

The matrices C and Mb are unknown. Then, in view of (2.9) the above
equation can be written for all data sets as follows

Θx = β, (5.11c)

x :=

vec(C)
m
mc

 , ∈ R40×1, (5.11d)

Θ :=


R⊤

1 ⊗ 16, −(G⊤
1 ⊗ 16)H

.

.
R⊤

ND
⊗ 16, −(G⊤

Nj
⊗ 16)H

 , ∈ R6NT×40, (5.11e)

β :=


vec(M1

aG1)
.
.

vec(MND
a G1)

 , ∈ R40×1. (5.11f)

with

NT =

ND∑
j=1

Nj ,

i.e. the number of all measurements, and the matrix H ∈ R18×4 a properly
chosen permutator such that

vec(Mb) = H

(
m
mc

)
.

To find the calibration matrix C, we have to find the solution x to the
equation (5.11c). The uniqueness of this solution is characterized by the
following lemma.
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(a) Dataset 1: no added mass (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Fig. 5.3 Added mass configurations for calibration datasets.

Lemma 5.2. A necessary condition for the uniqueness of the solution x to
the equation (5.11c) is that the number of data sets must be greater than
two, i.e.

ND ≥ 3. (5.12)

Proof. This is a proof by contradiction. Assume ND = 2. In addition,
assume, without loss of generality, also that the matrixMj in equation (5.11)
is perfectly known (adding unknowns to the considered problem would only
require a larger number of data sets). Then, in view of (5.11) and (5.12),
one has

C(R1, R2) = (M1G1,M2, G2).

The matrix C is the unknown of the above equation. By applying (2.9) one
easily finds out that there exists a unique C only if the rank of the matrix
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(R1, R2) is equal to six, i.e.

rank
(
(R1, R2)

)
= 6.

Recall that the matrix C is invertible by assumption, and thus with rank
equal to six. Consequently

rank
(
(R1, R2)

)
= rank

(
(M1G1,M2, G2)

)
= rank

(
(M1,M2)

(
G1 0
0 G2

))
≤ min

(
rank(M1,M2), 6

)
.

In view of (5.3), one easily verifies that det(M1,M2) ≡ 0, which implies that

rank
(
(R1, R2)

)
≤ 5.

Establishing a sufficient condition for the uniqueness of the solution x to
the equation (5.11c) is not as straightforward as proving the above necessary
condition, and is beyond the scope of this thesis. Clearly, this uniqueness is
related to the rank of the matrix Θ, and this rank condition can be verified
numerically on real data. Then, the solution x can be found by applying
least-square techniques, thus yielding estimates of the calibration matrix C
and of the inertial characteristics of the rigid body.

5.4 Experimental Results

To test the proposed method, we calibrated the two force-torque sensors
embedded in the leg of the iCub humanoid robot – see Figure 5.1. The mass
and the center of mass of this leg are unknown.

To apply the method described in section 5.3, we need to add sample
masses to the iCub’s leg. For this purpose, we installed on the robot’s
foot a beam to which samples masses can be easily attached. This beam
also houses a XSens MTx IMU. The supplementary accelerometer will no
longer be required when using the iCub version 2, which will be equipped
with 50 accelerometers distributed on the whole body. The iCub’s knee is
kept fixed with a position controller, so we can consider the robot’s leg as
a unique rigid body. Consequently, the accelerometer measures the gravity
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(a) Dataset 5 (b) Dataset 6

(c) Dataset 7: no added mass (d) Dataset 8

Fig. 5.4 Added mass configurations for validation datasets.

force w.r.t. both sensors. Recall also that to apply the proposed methods,
we need to modify the orientations of the sensors’ frames. To do so, we
modified the front-back and lateral angles associated with the robot’s hip.

We collected data associated with eight different added mass configura-
tions, each of which is characterized by a mass placed at a different location
with respect to the beam. In other words, we collected eight different data
sets. Figures 5.3 and 5.4 show the configurations of these data sets.

For each of these data sets, we slowly1 moved the front-back and lateral
angles of the robot hip, spanning a range of 70 deg for the front-back angle,
and a range of 90 deg for the lateral angle. We sampled the two F/T sensors
and the accelerometer at 100 Hz, and we filtered the obtained signals with
a Savitzky-Golay filter of third order with a windows size of 301 samples.

We estimated the sensors’ offsets by applying the method described in
section 5.3.2 on all eight data sets. Figure 5.5 verifies the statement of

1The iCub front-back and lateral angles were moved with peak velocities of 2 deg /s.
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Fig. 5.5 Dark blue: raw measurements of the sensor embedded in the leg
for dataset 1 projected in the 3D subspace through U1. In light blue an
ellipsoid fitted to the measured points is added, to highlight the fact that
the measured data lie on an ellipsoid. The o′ point estimated with the
method described in 5.3.2 is the center of this ellipsoid.
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Lemma 1, i.e. the raw measurements belong to a three dimensional ellip-
soid. In particular, this figure shows the measurements ri projected onto the
three dimensional space where the ellipsoid occurs, i.e. the left hand side
of the equation (5.10). Then, we removed the offset from the raw measure-
ments to apply the estimation method for the calibration matrix described
in section 5.3.3.

The two sensors’ calibration matrices were identified by using only four
data sets (see Figure 5.3). The other four were used to validate the obtained
calibration results (see Figure 5.4). The qualitative validation of the calibra-
tion procedure is based on the fact that the weight of the leg is constant for
each data sets. Consequently, if we plot the force measured by the sensors,
i.e. the first three rows of left hand side of the sensor’s equation

f = C(r − b),

these forces must belong to a sphere, since they represent the (constant
norm) gravity force applied to the sensors. As for elements of comparisons,
we can also plot the first three rows of the above equation when evaluated
with the calibration matrix that was originally provided by the manufacturer
of the sensors.

Figure 5.6 depicts the force measured by the sensor with the estimated
calibration matrix (in green) and with the calibration matrix provided by
the manufacturer (in red). It is clear to see that the green surfaces are much
more spherical than the red ones. As a matter of fact, Table 5.1 lists the
semi axes of the ellipsoids plotted in Figures 5.6, and clearly shows that the
green surfaces represent spheres much better than the red ones. Interestingly
enough, the force-torque sensor embedded in the iCub leg is much more mis-
calibrated than that embedded in the foot. In fact, by looking at the data
sheets describing the technological lives of these sensors, we found out that
the force-torque sensor embedded in the leg is much older than that in the
foot, which means that the calibration matrix of the leg’s sensor is much
older than that of the foot’s sensor.

The quantitative validation of the proposed calibration procedure is per-
formed by comparing the known weights of the added masses with the
weights estimated by the sensors. Table 5.2 shows that the estimated weights
obtained after performing the proposed calibration are better than those
estimated by using the calibration matrix provided by the sensor manufac-
turer. A similar comparison was conducted on the estimation of the sample
mass positions (Table 5.3). It has to be noticed that the errors in estimating
the mass position are relatively high, but this is due to the choice of using
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relatively small masses with respect to the sensor range and signal to noise
ratio.

Table 5.1 Qualitative calibration evaluation on validation dataset: ellipse
semiaxes after calibration

Sensor Dataset
Added
mass
(Kg)

Semiaxes length [N]
with proposed calibra-
tion

Semiaxes length [N]
with manufacturer
calibration

Foot 5 0.51 13.6 13.1 12.9 13.5 10.2 4.6
Foot 6 0.51 13.5 12.9 12.7 13.6 10.5 9.4
Foot 7 0 8.4 7.9 7.4 8.5 6.9 6.2
Foot 8 0.51 13.7 12.5 12.0 15.7 13.6 10.4

Leg 5 0.51 34.4 33.3 32.5 76.5 49.4 45.6
Leg 6 0.51 34.8 33.5 32.8 82.4 49.3 47.3
Leg 7 0 30.9 28.2 26.9 77.0 44.5 40.0
Leg 8 0.51 35.52 33.30 32.2 88.9 49.5 48.3

Table 5.2 Qualitative calibration evaluation on validation dataset: sample
mass estimations

Sensor Dataset Added mass (Kg)

Ground
truth

Proposed
calibration

Manufacturer
calibration

Foot 5 0.51 0.53 0.06
Foot 6 0.51 0.52 0.27
Foot 7 0 -0.03 -0.13
Foot 8 0.51 0.46 0.45

Leg 5 0.51 0.51 2.77
Leg 6 0.51 0.54 3.04
Leg 7 0 -0.04 2.39
Leg 8 0.51 0.51 3.25
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Table 5.3 Qualitative calibration evaluation on validation dataset: center of
mass estimations

Sensor Dataset Center of mass position for the added mass [cm]

Ground truth Proposed
calibration

Manufacturer cal-
ibration

Foot 5 39 -3.5 2.9 31 8.8 −8.3 273 −83 81
Foot 6 21 0 6.3 19 9.9 −5 30 −18 18
Foot 7 - - - - - - - - -
Foot 8 -4 0 6.3 5.5 9 −3.2 −8.6 −12 10

Leg 5 39 −3.5 39 28 11 29 16 6.5 29
Leg 6 20 0 43 17 9.7 30 12 5.1 −27
Leg 7 - - - - - - - - -
Leg 8 −4.3 0 43 3.8 8.8 32 7.5 4.9 −26
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(a) Validation results for leg F/T sensor.
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(b) Validation results for foot F/T sensor.

Fig. 5.6 Dark green: force measurements obtained through the calibration
matrix estimated using the proposed technique. Dark red: force measure-
ments obtained through the calibration matrix provided with the sensor.
Light red and light green surfaces: ellipsoids fitted to the measured forces.
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Chapter 6

Rigid Body Inertial
Parameters Identification

6.1 Introduction

A large part of existing robotic systems are modeled as a system of multiple
rigid bodies. The knowledge of the dynamical characteristics of these rigid
bodies is a key assumption of model-based control and estimation techniques,
such as the one presented in Chapter 4. The dynamics of a rigid body, i.e.
how the acceleration of a rigid body is related to the forces applied on it,
is completely described by the mass distribution of the body in the 3D
space. The mass distribution itself is completely described by 10 inertial
parameters [Hollerbach et al., 2016]. These parameters may be available if
a good Computer-Aided Design (CAD) model of the robot is available, but
often such models are either not available, or the mass distribution of the
rigid bodies in the robot changes during operation, as in the case of an end
effector that grabs and heavy object.

Inverse robot dynamics models can be written linearly with respect to
the inertial parameters of the rigid bodies composing the robot. Classical
identification techniques [Hollerbach et al., 2016, Ayusawa et al., 2014] con-
sider the parameters of each body to be an element of the Euclidean space
R10. Exploiting this fact, the inertial parameters identification problem
has been classically posed as a Linear Least Square optimization problem
[Hollerbach et al., 2016]. The resulting problem is convenient from a compu-
tational point of view, but it neglects the fact that not all vectors in R10 can
be generated by a physical rigid body, i.e. it is possible that some inertial
parameters are identified even if no physical rigid body could generate them.
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A necessary condition for the inertial parameters to be generated by a
physical rigid body was first proposed in [Yoshida et al., 1994]: the physical
consistency condition. This condition is important for control purposes be-
cause it ensures, if it is valid for all the links of a robot, the positive definite-
ness and the invertibility of the joint mass matrix [Yoshida and Khalil, 2000].
This property is a key assumption in proving the stability of model-based
control laws. The physical consistency has been enforced in identification
of inertial parameters using several techniques: [Yoshida and Khalil, 2000,
Mata et al., 2005, Gautier et al., 2013, Gautier and Venture, 2013, Sousa and
Cortesao, 2014, Jovic et al., 2015]. However this condition is not sufficient :
it is possible that some inertial parameters that respect this condition do
not correspond to any physical body: in particular this condition does not
encode the triangle inequalities of the 3D inertia matrix [Wittenburg, 2007,
Chapter 3], as it will be explained in the remainder of the chapter.

The main contribution of this paper is a new necessary and sufficient
condition for the inertial parameters to be generated by rigid body: the
full physical consistency condition. We show that this condition implies the
already proposed physical consistency condition and that the triangle in-
equalities are respected. Furthermore, we propose a nonlinear optimization
formulation that takes into consideration this constraint by using state of
the art optimization techniques on non-Euclidean manifolds [Brossette et al.,
2015]. The proposed optimization technique is validated with a rigid body
inertial identification experiment on the arm of the iCub humanoid robot.

For the sake of simplicity, in this chapter, we only consider the problem
of identifying the inertial parameters of a single rigid body. However, the
full physical consistency condition and the optimization on manifolds are
general contributions, that could be applied to the case of the identification
of inertial parameters in generic multibody structures.

The chapter is organized as follows. Section 6.2 presents the notations
used in the chapter and the background on rigid body dynamics. Section 6.3
details the proposed full physical consistency condition, the proposed non-
linear parametrization of the inertial parameters that ensures that this con-
dition is always satisfied and the optimization technique on the manifold of
the proposed parametrization. Section 6.4 describe the experiments used
for validation.

The notation used in the chapter is summarized in the next table.
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Notation used in Chapter 6
A Inertial frame.
B Body frame.
M := BMB 6D inertia matrix of body B expressed in

the B frame.
m Mass of the rigid body.
c := Bc Center of mass of the rigid body, ex-

pressed in the B frame.
IB 3D inertia of the body B, expressed with

the orientation of the body frame B and
w.r.t. the origin of B.

αg := Bαg
A,B ∈ R3 Angular velocity of the body expressed in

body frame.
ω := BωA,B ∈ R3 Angular velocity of the body expressed in

body frame.


6.2 Background on Rigid Body Inertial Parame-

ters

6.2.1 Rigid Body Dynamics

The Newton-Euler equations using the proper sensor acceleration (2.80) are
given by:

Mαg +

[
03×1

ω

]
×̄∗M

[
03×1

ω

]
= ϕ (6.1)

where αg := αg
A,B ∈ R6 is the sensor proper acceleration, ω := BωA,B ∈

R3 is the angular velocity of the body expressed in body frame, ϕ := BϕB is
the net force-torque acting on the robot expressed in B frame and M ∈ R6×6

is the 6D inertia matrix (also known as spatial inertia in Featherstone [2008])
expressed in body frame B

M =

[
m13 −mc∧
mc∧ IB

]
. (6.2)

Where:

� m ∈ R is the mass of the rigid body,

� c ∈ R3 := Bc is the center of mass of the rigid body, expressed in the
frame B,
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� IB ∈ R3×3 is the 3D inertia matrix of the rigid body, expressed with
the orientation of frame B and with respect to the frame B origin.

6.2.2 Inertial parameters

The 6D inertia matrix is parametrized by 10 parameters, usually called
the inertial parameters of the rigid body [Hollerbach et al., 2016], that are
defined as π ∈ R10:

π =

 m
mc

vech(IB)

 . (6.3)

The product of a generic vector

[
v
ω

]
∈ R6 by the 6D inertia matrix M

can be written as a product of a matrix in R6×10 for the vector of inertial
parameters π:

M
[
v
ω

]
= D

([
v
ω

])
π =

[
v ω∧ 03×6

03×1 −v∧ ω•

]
π (6.4)

where the matrix ω• is defined such that ω • vech(IB) = IBω:

ω• =

ωx ωy ωz 0 0 0
0 ωx 0 ωy ωz 0
0 0 ωx 0 ωy ωz

 . (6.5)

Proposition 6.1 (Newton-Euler equations linearity in the inertial param-
eters). The Newton-Euler equations (6.1) can be written linearly [Garofalo
et al., 2013, Hollerbach et al., 2016] in the inertial parameters (6.3):

Y (αg, ω)π = Mαg +

[
03×1

ω

]
×̄∗M

[
03×1

ω

]
= ϕ, (6.6)

with:

Y (αg, ω) = D (αg) +

[
03×1

ω

]
×̄∗D

([
03×1

ω

])
. (6.7)

6.2.3 Relationship between the inertial parameters and the
density function

The mass distribution of a rigid body in space is described by its density
function:

ρ(·) : R3 7→ R≥0. (6.8)
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The domain of this function is the points of body expressed in the body-
fixed frame B. We consider the density equal to zero for the points outside
the volume of the rigid body, so we can define the domain of ρ(·) to be all
the points in the 3D space R3.

The inertial parameters are obviously a functional of the density ρ(·),
in particular, we can define the functional πd(·) : (R3 7→ R≥0) 7→ R10 that
maps the density function to the corresponding inertial parameters:

πd(ρ(·)) =

 m(ρ(·))
mc(ρ(·))

vech(IB(ρ(·)))

 =

=



∫∫∫
R3

ρ(r)dr∫∫∫
R3

rρ(r)dr

vech

(∫∫∫
R3

(r∧)T r∧ρ(r)dr

)
 . (6.9)

6.2.4 3D Inertia at the Center of Mass and Principal Axes

The 3D inertia at the center of mass is defined as

IC =

∫∫∫
R3

((r − c)∧)T (r − c)∧ρ(r)dr. (6.10)

Exploiting the fact that (·)∧ is linear, the inertia matrix with respect to
the center of mass can be written as:

IC = IB +mS(c)S(c). (6.11)

This result is known as parallel axis theorem.
As IC is symmetric, it can be diagonalized with an orthogonal matrix

Q ∈ SO(3):
IC = Qdiag (J)QT . (6.12)

Using (6.10) the diagonal matrix diag (J) (with J ∈ R3) can be written
as:

diag (J) =

∫∫∫
R3

QT ((r − c)∧)T (r − c)∧Qρ(r)dr =

∫∫∫
R3

((QT (r − c))∧)T (QT (r − c))∧ρ(r)dr. (6.13)
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The operation mapping the body point r to QT (r−c) can be interpreted
as a change of reference frame, from the body frame B to a frame C (a
principal axes frame) whose origin is the center of mass of the body and
whose orientation is one in which the IC matrix is diagonal.

By expressing with r̃ = QT (r − c) the generic point of the body ex-
pressed in the C frame, and with ρ̃(r̃) the density with respect to the C
frame, we can write diag J as:

diag J =

∫∫∫
R3

(r̃∧)T r̃∧ρ(r̃)dr̃. (6.14)

The elements of the J vector are:

Jx =

∫∫∫
R3

(ỹ2 + z̃2)ρ̃(r̃)dr′, (6.14a)

Jy =

∫∫∫
R3

(x̃2 + z̃2)ρ̃(r̃)dr̃, (6.14b)

Jz =

∫∫∫
R3

(x̃2 + ỹ2)ρ̃(r̃)dr̃. (6.14c)

We can write them as:

Jx = Ly + Lz, Jy=Lx + Lz, Jz=Lx + Ly. (6.15)

Lx =

∫∫∫
R3

x̃2ρ̃(r̃)dr̃, Ly=

∫∫∫
R3

ỹ2ρ̃(r̃)dr̃, (6.16)

Lz =

∫∫∫
R3

z̃2ρ̃(r̃)dr̃. (6.17)

Where Lx, Ly, Lz are the central second moments of mass of the density ρ̃(r̃).

It is clear that the non-negativity of ρ̃(r̃) constraints L =
[
Lx Ly Lz

]T
to be non-negative as well. Furthermore, it is possible to see that the non-
negativity of L induces the triangular inequalities on diag (J):

Jx ≤ Jy + Jz, Jy ≤ Jx + Jz, Jz ≤ Jx + Jy. (6.18)
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6.2.5 Inertial Parameters Identification

Assuming that N values for F ,Ag and V are measured, equation (6.6) can
be used to estimate π solving the following optimization problem:

π̂ = arg min.
π∈R10

N∑
i=1

∥Y (αg
i , ωi)π − fi∥2 . (6.19)

However, this optimization does not take into account the physical prop-
erties of the inertial parameters π. For this reason, the following definition
was introduced.

Definition 6.1. A vector of inertial parameters π is called physical consis-
tent [Yoshida et al., 1994, Yoshida and Khalil, 2000] if:

m(π) ≥ 0, IC(π)⪰0. (6.20)

This condition has nice properties (it ensures that the matrix M is al-
ways invertible), but is still possible to find some physical consistent inertial
parameters that can’t be generated by a physical density.

6.3 Full Physical Consistency

6.3.1 Full physical consistency

In this subsection, we propose a new condition for assessing if a vector of
inertial parameters can be generated from a physical rigid body. We will
show that all the constraints that emerge due to this full physical consistency
condition are due to the non-negativity on the density function.

Definition 6.2. A vector of inertial parameters π∗ ∈ R10 is called fully
physical consistent if:

∃ ρ(·) : R3 7→ R≥0 s.t. π∗ = πd(ρ(·)). (6.21)

This definition extends the concept of physical consistent inertial pa-
rameters to include also all possible constraints of inertial parameters, such
as the triangular inequalities (6.18) of the diagonal elements of the inertia
matrix.

Lemma 6.1. If a vector of inertial parameters π ∈ R10 is fully physical
consistent if follows that it is physical consistent, according to Definition
6.1.
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Proof. If π is fully physical consistent, then it follows that there exists ρ(·)
such that the corresponding 3D inertia at the center of mass IC can be
written as a function of ρ(·). The positive semi-definiteness of m and IC
then follows from the classical properties of mass and the inertia matrix of
a rigid body, see for example subsection 3.3.3 of Wittenburg [2007].

Lemma 6.2. If a vector of inertial parameters π ∈ R10 is fully physical
consistent, the associated inertia matrices at the body origin IB(π) and at
the center of mass IC(π) respect the triangular inequalities (6.18).

Proof. This lemma can be proved by writing IB or IC as a functional of
the density function ρ(·), as in the proof of Lemma 6.1. Once IB or IC
are written as a functional of ρ(·), the demonstration that they respect the
triangle inequality can be found in any rigid body mechanics textbook, see
for example subsection 3.3.4 of Wittenburg [2007].

To get a hint of the demonstration of Lemma 2, consider that the diag-
onal elements of the 3D inertia matrix with respect to an arbitrary frame
can still be written as the sum of two non-negative second moments of mass.
The triangle inequality then arises in a way similar to the case of the inertia
expressed in the principal axes.

6.3.2 Full physical consistent parametrization of inertia pa-
rameters

In this subsection, we introduce a novel nonlinear parametrization of inertial
parameters that ensures the full physical consistency condition.

We choose to parametrize the mass as an element of the spaces of non-
negative numbers m ∈ R≥0.

The center of mass do not have any constraints on its location, so we
choose to parametrize it as an element of the 3D space c ∈ R3.

For parametrize the 3D inertia matrix ensuring the properties described
in subsection 6.2.4 we choose the second moments of mass L ∈ R3

≥0 to be
components of our parametrization. In the following, we will show how this
choice ensures the full physical consistency of the resulting inertial parame-
ters.

The inertial parameters of a rigid body can then be parametrized by an
element θ ∈ P = R≥0 ×R3 ×SO(3)×R3

≥0. In particular the components of
θ are:

� m ∈ R≥0 the mass of the body
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� c ∈ R3 the center of mass of the body

� Q ∈ SO(3) the rotation matrix between the body frame and the frame
of principal axis at the center of mass

� L ∈ R3
≥0 the second central moment of mass along the principal axes

In other terms, there is a function πp(θ) : P 7→ R10 that maps this new
parametrization to the corresponding inertial parameters:

πp(θ) =

 m(θ)
mc(θ)

vech (IB(θ))

 =

 m
mc

vech
(
Qdiag (PL)QT −mS(c)S(c)

)


Where P =

0 1 1
1 0 1
1 1 0

 is a matrix that maps L to J .

Theorem 6.1. For each θ ∈ P, there exists a density function ρ(·) : R3 7→
R≥0 such that πd(ρ(·)) = πp(θ), i.e. every θ ∈ P generates fully physical
consistent inertial parameters.

Proof. We prove the statement in a constructive way: given an arbitrary
element θ = (m, c,Q,L) ∈ P we build a density function ρ(·) : R3 7→ R≥0

such that πp(θ) = πd(ρ(·)). For example we can think of a cuboid of uniform
unit density, with the center of the cuboid coincident with the center of mass
of the inertial parameters (given by c), with the orientation of its symmetry
axis aligned with the C principal axes frame defined by the Q rotation
matrix and the cuboid sides of lengths 2dx , 2dy and 2dz, with:

d =
[
dx dy dz

]⊤
=
[√

3Lx
m

√
3
Ly

m

√
3Lz
m

]⊤
(6.22)

Its density function in the C frame is given as:

ρ̃(r̃) =

{
1 if −d ≥ r̃ ≥ d

0 otherwise

while the density function in the B frame is given by:

ρ(r) =

{
1 if −Qd+ c ≥ r ≥ Qd+ c

0 otherwise
. (6.23)
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The density defined in (6.23) and (6.22) can be seen as a function γ(·) :
P 7→ (R3 7→ R≥0). The theorem is then demonstrated by using (6.9) and
(6.22) to verify that:

πd(γ(θ)) = πp(θ)

is true ∀ θ ∈ P.

Using the parametrization presented in Theorem 6.3.2, it is possible to
recast the identification optimization problem (6.19) as:

π̂ = π(θ̂) (6.24)

θ̂ = arg min.
θ∈P

N∑
i=1

∥Y (αg
i , ωi)π(θ)− fi∥2 (6.25)

The main advantage of (6.24) with respect to (6.19) is that thanks to
Theorem 6.1 the identified inertial parameters π̂ are ensured to be fully
physically consistent. However, the optimization variable θ does not live
anymore in a Euclidean space, because P includes SO(3), so to solve this
optimization problem in this need to either modify or to exploit specific
techniques related to the optimization on manifolds, as we did in the exper-
iments provided in Section

6.4 Experimental Results

6.4.1 Optimization on Manifolds

For this chapter, we focus on SO(3), a 3-dimensional manifold. As such, it
can be parametrized locally by 3 variables, for example, a choice of Euler
angles, but any such parametrization necessarily exhibits singularities when
taken as a global map (e.g. gimbal lock for Euler angles), which can be
detrimental to our optimization process.

For this reason, when addressing SO(3) with classical optimization algo-
rithms, it is often preferred to use one of the two following parametrizations:

� unit quaternion, i.e. an element q of R4 with the additional constraint
∥q∥ = 1,

� rotation matrix, i.e. an element R of R3×3 with the additional con-
straints RTR = I and detR ≥ 0.
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The alternative is to use optimization software working natively with
manifolds [Brossette et al., 2015][Absil et al., 2008] and solve

arg min.
θ∈R×R3×SO(3)×R3

N∑
i=1

∥Y (agi , vi)π(θ)− fi∥2 (6.26)

subj. to m ≥ 0, Lx ≥ 0, Ly ≥ 0, Lz ≥ 0 (6.27)

This alternative has an immediate advantage: we can write directly the
problem (6.24) without the need to add any parametrization-related con-
straints. Because there are fewer variables and fewer constraints, it is also
faster to solve. To check this, we compared the resolution of (6.24) formu-
lated with each of the three parametrizations (native SO(3), unit quater-
nion, rotation matrix). We solved the three formulations with the solver
presented in [Brossette et al., 2015], and the two last with an off-the-shelf
solver (CFSQP [Lawrence et al., 1997]), using the dataset presented later
in this section. The formulation with native SO(3) was consistently solved
faster. We observed timings around 0.5s for it, and over 1s for non-manifold
formulations with CFSQP. The mean time for an iteration was also the low-
est with the native formulation (at least 30% when compared to all other
possibilities).

Working directly with manifolds has also an advantage that we do not
leverage here, but could be useful for future work: at each iteration, the
variables of the problem represent a fully physical consistent set of inertial
parameters. This is not the case with the other formulations we discussed, as
the (additional) constraints are guaranteed to be satisfied only at the end of
the optimization process. Having physically meaningful intermediate values
can be useful to evaluate additional functions that presuppose it (additional
constraints, external monitoring . . .). It can also be leveraged for real-time
applications where only a short time is allocated repeatedly to the inertial
identification, so that when the optimization process is stopped after a few
iterations, the output is physically valid. With non-manifold formulations,
at any given iteration, the parametrization-related constraints can be vio-
lated, thus, the variables might not lie in the manifold. It is then needed
to project them on it. Denoting π the projection (for example π = q

∥q∥ in

the unit quaternion formulation), to evaluate a function f on a manifold,
we need to compute f ◦ π. If further the gradient is needed, that projection
must also be accounted for ([Bouyarmane and Kheddar, 2012] explains this
issue in great details for free-floating robots).

In this study, we use the same solver and approach as presented in [Bros-
sette et al., 2015] which was inspired from [Absil et al., 2008]. The driving
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idea of the optimization on manifold is to change the parametrization at
each iteration. The problem at iteration k becomes:

min
zk∈Rn

f ◦ φxk
(z) s.t. c ◦ φxk

(z) = 0. (6.28)

Then xk+1 = φxk
(zk) is guaranteed to belong to M. The next iteration uses

the same formulation around xk+1.
The smooth maps φx are built-in and are used automatically by the

solver while the user only has to implement the functions of the optimization
problem without the burden of worrying about the parametrization.

6.4.2 Experiments

The iCub is a full-body humanoid with 53 degrees of freedom, thoroughly
described in Section 1.1. For validating the presented approach, we used the
six-axis force/torque (F/T) sensor embedded in iCub’s right arm to collect
experimental F/T measurements. We locked the elbow, wrist and hands
joints of the arm, simulating the presence of a rigid body directly attached
to the F/T sensor, a scenario similar to the one in which an unknown payload
needs to be identified [Kubus et al., 2008].

FT sensor
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?

Forearm
�
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���

Fig. 6.1 CAD drawing of the iCub arm used in the experiments. The used
six-axis F/T sensor is visible in the middle of the upper arm link.
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We generated five 60 seconds joint positions paths in which the three
shoulder joints were reaching random joint position using point to point
minimum-jerk like trajectories. The point to point trajectory completion
times were 10s, 5s, 2s, 1s and 0.5s for the different paths. We played these
joint paths on the robot and we sampled at 100Hz the F/T sensors and
joint encoders output. We filtered the joint positions and obtained joint
velocities and accelerations using a Savitzky-Golay filtering of order 2 and
with a windows size of 499, 41, 21, 9, 7 samples. We used joint positions,
velocities and accelerations with the kinematic model of the robot to com-
pute ag and v of the F/T sensor for each time sample. We removed the
unknown offset from the F/T measurements using the offset removal tech-
nique described in [Traversaro et al., 2015]. We then solved the inertial
identification problem using the classical linear algorithm (6.19) and the
one using the proposed fully physical consistent parametrization (6.26). We
report the identified inertial parameters in Table 6.1. It is interesting to
highlight that for slow datasets (trajectory time of 10s or 5s) the uncon-
strained optimization problem (6.19) results in inertial parameters that are
not fully physical consistency. In particular, this is due to the low values
of angular velocities and acceleration, that do not properly excites the iner-
tial parameters, which are then numerically not identifiable. The proposed
optimization problem clearly cannot identify these parameters anyway, as
the identified parameters are an order of magnitude larger than the ones
estimated for faster datasets, nevertheless, it always estimates inertial pa-
rameters that are fully physical consistent. For faster datasets (trajectory
time of 1s or 0.5s) the results of the two optimization problems are the same
because the high values of angular velocities and accelerations permit to
identify all the parameters perfectly. While this is possible to identify all
the inertial parameters of a single rigid body, this is not the case when iden-
tifying the inertial parameters of a complex structure such as a humanoid
robot, for which both structural [Ayusawa et al., 2014] and numerical [Pham
and Gautier, 1991] not identifiable parameters exists. In this later applica-
tion, the enforcement of full physical consistency will always be necessary
to get meaningful results.
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Table 6.1 Inertial parameters identified with the different datasets and the
different optimization problems.

10 s 5 s 2 s 1 s 0.5 s
R10 P R10 P R10 P R10 P R10 P

m 1.836 1.836 1.842 1.842 1.852 1.852 1.820 1.820 1.843 1.844
mcx 0.062 0.062 0.061 0.060 0.060 0.060 0.060 0.060 0.060 0.059
mcy 0.001 0.001 0.000 0.000 0.001 0.001 0.002 0.002 0.005 0.004
mcz 0.208 0.208 0.206 0.206 0.206 0.206 0.205 0.205 0.204 0.204
Ixx 0.580 0.215 0.128 0.166 0.065 0.067 0.032 0.034 0.033 0.037
Ixy 0.593 0.012 -0.02 0.001 0.001 0.001 0.001 0.001 0.003 0.001
Ixz -0.54 -0.06 -0.13 -0.09 -0.04 -0.03 -0.02 -0.02 -0.02 -0.02
Iyy 1.022 0.227 0.125 0.216 0.066 0.086 0.036 0.042 0.035 0.039
Iyz 0.190 0.038 0.026 0.001 0.006 0.003 0.002 0.001 0.000 0.000
Izz -0.13 0.028 -0.00 0.050 0.007 0.014 0.008 0.009 0.008 0.008

Inertial parameters identified on R10 optimization manifold that are not fully phys-
ical consistent are highlighted.
Masses are expressed in kg, first moment of masses in kgm, inertia matrix elements
in kgm2.
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Chapter 7

Multi Body Inertial
Parameters Identification

7.1 Introduction

A fundamental problem in controlling torque-actuated robots is the accurate
modeling of their dynamics. Depending on the performed task (e.g. control,
simulation, contact detection) we can distinguish two possible approaches
[Hollerbach et al., 2016]: in structural modeling the interest is on identify-
ing the real inertial parameters of the robot, while in predictive modeling
the interest is only on replicating the input-output behavior of the system,
the input and output being some measured quantities. In structural mod-
eling the usual approach is to excite the robot with trajectories chosen so
as to be the optimal for identifying the identifiable (i.e. base) parameters
[Armstrong, 1988]. In predictive modeling, the only concern is to accu-
rately model the input-output response of the dynamical system. This has
a significant implication: the interest is not in estimating the “real” param-
eters, but in getting parameters capable of generalizing predictions across
the whole work space. Interestingly, within this context different regression
techniques can be adopted, ranging from parametric [Hollerbach et al., 2016],
semi-parametric [Duy Nguyen-Tuong and Peters, 2010] and machine learn-
ing approaches [Fumagalli et al., 2010a]. A common task that falls within
the predictive modeling category is learning inverse dynamics: inputs are
positions, velocities and accelerations while outputs are joint torques.

In this chapter we tackle a problem that lies in between structural and
predictive modeling. We aim to relax the modeling assumptions in the pro-
cedure illustrated in Chapter 4 to estimate joint torques from embedded
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6-axis force/torque sensors. This estimation procedure allows us to imple-
ment torque control on robots without joint torque sensing. Since most
(humanoid) robots are not equipped with joint torque sensors, but have 6-
axis F/T sensors, this approach opens the possibility to implement inverse-
dynamics control on these “old-generation” robots. Moreover, this is inter-
esting also for new-generation robots, which could be easily equipped with
6-axis F/T sensors, without going through the hassle of redesigning the
joints to include torque sensing.

The main drawback of this method is that it relies on the inertial param-
eters to estimate the joint torques. The goal of this paper is to understand
if and to what extent this knowledge is necessary and if we can partially
retrieve it through identification procedures similar to the one proposed in
[Hollerbach et al., 2016]. The major technical obstacle lies in the following
consideration. We can use F/T measurements to estimate certain inertial
parameters (known in literature as base parameters): what is the relation-
ship between these parameters and the ones used in [Fumagalli et al., 2012]
to estimate (internal) joint torques and (external) contact forces? In this
framework non-parametric techniques have limited appeal and therefore we
pursue a parametric approach.

Consistently with the rest of the thesis, in this chapter we will discuss
the problem of estimating inertial parameters in the context of free floating
robots. In particular we will discuss the case of iCub and its specific set of
sensors, as introduced in Section 1.1.

In this chapter, we will use several concepts related to the change of base
link that we introduced in Chapter 3. The notation used in the chapter is
summarized in the next table.





Notation used in Chapter 7
LinkIndex(·) :
L 7→ {1, · · · , nL}

Link serialization function.

πL ∈ R10 Vector of inertial parameters of link L.
ψ ∈ R10nL Vector of all the inertial parameters of a

multibody system.
αg
B := αg

A,B Sensor proper acceleration of body B.

ωB := BωA,B Angular velocity of the link B in the B
frame.

s Internal joint (shape) positions.
ṡ Internal joint (shape) velocities.
s̈ Internal joint (shape) accelerations.
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7.2 Identification of floating base dynamics

Similarly to the rigid body case presented in Chapter 6, the inertial param-
eters of the a multibody system can be reprented by an inertial parameters
vector, defined as in the following.

Definition 7.1 (Multibody Inertial Parameters Vector). Given a multibody
system, its inertial parameters vector ψ ∈ R10nL is defined as:

ψ =


πLinkIndex(1)
πLinkIndex(2)

...
πLinkIndex(nL)

 ∈ R10nL ,

where πL ∈ R10 is the vector of the inertial parameters of link L, defined in
(6.3).

Several dynamics-related quantities, starting from the lagrangian itself,
can be written linearly w.r.t. to this vector. While in the past methods to
use energy-based [Gautier and Khalil, Gautier] or center of pressure-based
[Baelemans et al., 2013, Baelemans, 2013] have been proposed, the most
used method in the literature of the identification of humanoids inertial pa-
rameters is the floating base dynamics regressor [Jovic et al., 2015, Ayusawa
et al., 2014, Ogawa et al., 2014, Mistry et al., 2009], introduced in the next
proposition.

Proposition 7.1 (Floating Base Regressor [Ayusawa et al., 2014]). The
right-hand side of (3.64) can be rearranged linearly with respect to a vector
of inertial parameters ψ, i.e. :

Γ(αg
B, ωB, s, ṡ, s̈) =

[
BYb
BYs

]
ψ =

[
06×1

τ

]
+
∑
L∈L

J⊤
L fxl . (7.1)

The typical assumption in literature is that both joint torques and con-
tact force measurements are available [Mistry et al., 2009, Ogawa et al.,
2014], and in that case all the lines of (7.1) can be used for identification.
The alternative assumption is that only contact forces measurements are
available [Ayusawa et al., 2014, Jovic et al., 2015] and in that case only the
first 6 rows of (7.1) are used for estimation, disregarding the shape dynamics.
However both this hypothesis are not matched by the assumptions of this
thesis explained in Chapter 4: in our case neither joint torques nor contact
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forces are available as measurements, and the estimates presented in Chap-
ter 4 depend them-self on the inertial parameters of the assumed model, so
they cannot be used for inertial parameters estimation. Assuming that the
considered models is equipped with internal six-axis force-torque sensor, the
solution is again to consider the submodels introduced in Subsection 4.5.1
separately. In particular, also the left-hand term of (4.19) can be rewritten
in function of ψ:

Yϕsmψ =
∑

L∈Lsm

BX
L
LϕL =

∑
L∈(C∩Lsm)

BX
L
Lf

x
L +

∑
L∈Lsm

∑
D∈ℶsm(L)

BX
D
DfD,L

(7.2)
In general there are two classes of unknowns in this equation: the inertial

parameters ψ and the external force-torque Lf
x
L. If at a given instant we

know that no external force-torques (from a-priori information or from the
distributed tactile system) are acting on the submodel sm, the equation can
be rewritten as:

Yϕsmψ =
∑

L∈Lsm

BX
L
LϕL =

∑
L∈Lsm

∑
D∈ℶsm(L)

BX
D
DfD,L (7.3)

and this equation can be used directly for the identification of the inertial
parameters ψ.

The regressor obtained by combining the base regressors of of all sub-
models M = 1, 2, . . . , n+ 1 is defined as:

YϕM
ψ =


Yϕ1

Yϕ2

...
Yϕn+1

ψ =


∑

L∈(C∩L1) B
XL

Lf
x
L∑

L∈(C∩L2) B
XL

Lf
x
L

...∑
L∈(C∩Ln+1) B

XL
Lf

x
L

+


∑
L∈L1

∑
D∈ℶ1(L) B

XD
DfD,L∑

L∈L2

∑
D∈ℶ2(L) B

XD
DfD,L

...∑
L∈Ln+1

∑
D∈ℶn+1(L) B

XD
DfD,L


(7.4)

The actual part of YϕM
that can be used for estimation depends on the

instantaneous set of links that are in contact with the environment C. How-
ever, assuming that for each submodel there exists data samples in which
they are not in contact with the environment all parts of YϕM

can be used
for identification, sooner or later.

The regressor for joint torques can be written easily due to Theorem 4.2.
In particular (4.25) can be written as:

τE,F =
〈
F sE,F ,

∑
ϕL + F fG,H

〉
= Yτ̂E,F

ψ +
〈
F sE,F ,

F fG,H

〉
. (7.5)
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Identifiable subspaces

The different parametric representation of the robot dynamics such as (7.1)
or the submodel representation (7.2) can be always rearranged as Y ϕ = m,
where both Y and m can be computed given the available measurments.
An estimation of ϕ can be obtained by considering repeated measurements
Y 1, . . . , Y N and the associated values of the regression matrix Y 1, . . . , Y N ,
related as follows: 

Y 1

Y 2

. . .
Y N

ϕ =


m1

m2

. . .
mN

 . (7.6)

The matrix that multiplies ϕ is rank deficient regardless of the number of
measured samples N [Hollerbach et al., 2016].

More specifically, the following vector subspaces of R10nL can be defined.

Definition 7.2 (Non-Identifiable Subspace [Sheu and Walker, 1991]). Given
a regressor Y , the inertial parameters non-identifiable subspace NY is de-
fined as:

NY = {ϕ ∈ R10nL : Y (ωB, α
g
B, s, ṡ, s̈)ϕ = 0,

∀ ωB ∈ R3, αg
B ∈ R6, s, ṡ, s̈ ∈ Rn}. (7.7)

Definition 7.3 (Identifiable Subspace [Sheu and Walker, 1991]). Given a
regressor Y , the inertial parameters identifiable subspace IY is defined as
the subspace orthogonal to NY , i.e.:

IY = N⊥
Y (7.8)

In general the space NY is non-empty as a consequence of fact that the
columns of Y are linearly dependent for any choice of the robot position,
velocity and acceleration. Only certain linear combinations of the elements
of ϕ influence the measurements and these combinations can be obtained as:

ψ = Bπ (7.9)

being B a matrix whose columns are an orthonormal base of the identifiable
subspace IY .

It is then possible to reformulate (7.6) as:
Y 1B
Y 2B
. . .
Y NB

π =


Y 1

Y 2

. . .
Y N

 → GNπ = gN , (7.10)
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with obvious definition for the matrix GN and the vector gN . Classically,
equation (7.10) has been used for the estimation of the base parameters as-
sociated with a certain measurement m. This is suitable if the goal of the
parametric identification was to improve the prediction of the measurement
m itself. In the case of the estimation algorithm presented in Chapter 4,
however the measurement available for the inertial parameters identification
(i.e. the sum of the measured force-torque acting on a submodel) are differ-
ent from some measurements we are interested in estimating. For this reason
in the next section we investigate the relation between the identifiable sub-
space of the quantities that we can measure (internal six-axis force-torque
sensor) and the identifiable subspace of the measurements that we want to
predict (joint torques, estimated as in (7.5)).

7.3 Inertial Parameter Identification and Torque
Estimation

In this section we demonstrate that the inertial parameters inertial param-
eters used for torque estimation are a subset of the inertial parameters that
can be estimated from the submodel regressors given in (7.4).

Property 7.1 (Identifiable subspace of sum of two regressors). Given the
regressors Ya,Yb and Yc = Yb+Ya the identifiable subspace of Yc is given by:

IYc ⊆ IYa + IYb
. (7.11)

Proof. From the definition of non-identifiable subspace (7.7) we have:

NYa ∩NYb
⊆ NYc .

Using the definition of identifiable subspace (7.8) and the De Morgan laws
for vector spaces one obtains (7.11).

Property 7.2 (Identifiable subspace of combination of two regressors).

Given two regressors Ya,Yb and the combined regressor Yc =

[
Ya
Yb

]
the iden-

tifiable subspace of the combined regressor is given by:

IYc = IYa + IYb
. (7.12)

Proof. From the definition of non-identifiable subspace (7.7) we have:

NYa ∩NYb
= NYc .

Using (7.8) and the De Morgan laws for vector spaces one obtains (7.12).
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Lemma 7.1 (Identifiable subspace of a regressor multiplied by a full rank
square matrix). Given a regressor Ya and the regressor obtained by multi-
plyng Ya by a always full-rank square matrix M : Yb = MYa the identifiable
subspace of Yb is equal to the one of Ya, i.e. :

Yb = Ya (7.13)

Theorem 7.1. The identifiable subspace of the base dynamics regressor Yb
is equal to the identifiable subspace of the full dynamics regressor Y , both
defined in (7.1), i.e.:

IY = IYb
(7.14)

furthermore the shape dynamics regressors Ys is a subspace of the base dy-
namics regressor Yb, i.e.:

IYs ⊆ IYb
. (7.15)

Proof. The proof for the first part of this theorem is provided in [Ayusawa
et al., 2014]. For the second part, it is a consequence of Property 7.2 that
IYs ⊆ IY , by combining this with (7.14) one obtains (7.15).

Theorem 7.2. Given a multibody system equipped with internal six-axis
force-torque sensors, the identifiable subspace of the dynamics regressor IY
is a subspace of the identifiable subspace of the combined regressor of all
submodel base dynamics IYM

, i.e.:

IY ⊆ IYϕM
(7.16)

Proof. From Property 7.2 we have that IYϕM
is given by:

IYϕM
=
∑

sm∈M
IYϕsm

(7.17)

while from Property 7.1 and from the structure of Yb we have that

IYb
⊆
∑

sm∈M
IYϕsm

. (7.18)

Combining these two statements with (7.14) one obtains (7.16).

Theorem 7.3. Given a multibody system equipped with internal six-axis
force-torque sensors, and one submodel sm ∈ M induced by the force-torque
sensors for every joint J belonging to sm the identifiable subspace of the
regressor used for torque estimation (7.5) is a subspace of the identifiable
subspace of the regressor of the submodel base dynamics IYM

, i.e.:

∀J ∈ J− J0 IYτ̂J
⊆ IYϕsm

. (7.19)
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Proof. If we consider the submodel sm as an indipendent multibody system
rather then as a submodel, we would have that the base submodel dynamics
regressor Yϕsm would be exactly Yb, while, by choosing an appropriate base
link IYτ̂J

would be a line of Ys. Then, the theorem is demonstrated as a
consequence of (7.15).

7.4 Experimental results

In this section we present the results obtained on a special version of the
iCub humanoid robot, in which some joints are equipped with joint torque
sensors and can provide us with a ground truth for the estimation of joint
torques and the corresponding identification of the inertial parameters.
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Fig. 7.1 CAD drawing of the seven degree-of-freedom iCub arm used in the
experiments. Three out of the four joints (two in the shoulder and one in
the elbow) are sensorized with joint level torque sensors. These joints are
the ones considered in the proposed experiments.

Experiments were conducted on three joints (pitch and yaw in the shoul-
der and elbow)1 of the iCub left arm (see Fig. 7.1). These joints are equipped
with joint level torque sensors. Additionally a single F/T sensor is positioned
in the middle of the upper arm as represented in Fig. 7.1. In the experiment,

1http://wiki.icub.org/wiki/ICub joints
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data from the F/T sensor were used to estimate the associated base param-
eters. Thanks to the theoretical results presented in the previous sections,
these parameters coincides with the one used by the method in the rRNEA
to obtain an estimation of the joint torques. These estimations have been
compared with direct joint torque measurements, used in this framework
as a ground truth. Results are presented in Fig. 7.2 where we reported in
blue direct joint torque measurements, in red predictions using CAD pa-
rameters and in green predictions from the estimation in Fumagalli et al.
[2012] supplied with the on-line estimation of the base parameters (presented
in Fig. 7.3). At the beginning of the simulation estimated parameters are
clearly not sufficiently well estimated to predict with sufficient accuracy the
joint torques. This condition holds true until the arm starts moving (vertical
solid black line in both Fig. 7.2 and Fig. 7.3).

During the testing trajectories, the end-effector randomly moved in Carte-
sian space, without any interaction with the environment. Literature on
suitable choices of the exciting trajectories is extensive, but such an imple-
mentation is out of the scope of the present paper. This simpler choice is
also motivated by two factors: first, we need to avoid self-collision of the
robot in a simple way; second, we need to generate trajectories similar to
those produced during standard operation of the humanoid robot and our
goal is to on-line estimate the parameters during standard operations. Joint
velocities and accelerations have been estimated using an adaptive-window
fitting algorithm Janabi-Sharifi et al. [2000].
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Fig. 7.2 Joint level torques (left part) and errors (right part): measured
(black), estimated with CAD parameters (red) and estimated with the pro-
cedure in Fumagalli et al. [2012] supplied with identified parameters (green).
The vertical solid gray line indicate the movement onset.
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Fig. 7.3 The picture shows the time behavior of the base parameters estima-
tion. The estimation is executed on-line in an iterative fashion. The onset of
the movement (vertical solid black line) determines the instant at which the
data from the F/T sensor become informative for the estimation problem.
Convergence is quite fast and mirrors the behavior of the torques estimation
in Fig. 7.2.
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Appendix A

Mathematical background on
Lie group formalism

In this appendix we will briefly define the concepts necessary to derive the
equations of motions from the principle of least action. To ensure that this
section is accessible to readers without an extensive background in differ-
ential geometry, we will only introduce concepts related to matrices of real
elements, rather then more abstract representations.

The reader interested in Lie Groups is referred to [Hall, 2003] and [Still-
well, 2008] for a basic overview of Matrix Lie Group theory, to [Selig, 2005]
and [Murray et al., 1994, Appendix] for an Lie Group applications in robotics
and to [Marsden and Ratiu, 1999] for an advanced approach to Lie Group
and their connection to mechanical systems.

A.1 Matrix Lie Groups

Definition A.1 (Group). A set G associated with a binary operation · :
G×G 7→ G is called a group (G, ·) if the following properties are respected:

� Closure: For every g1, g2 ∈ G their operation g1 · g2 belongs to G, i.e.
G is the domain of the group operation.1

� Associativity: For every g1, g2, g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3) .

� Existence of the identity: There exist an element of the group, called
identity I ∈ G, such that for every g ∈ G we have I · g = g · I = g.

1This condition is implied in the definition of the binary operation, but it is typically
included in the group definition in literature.
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� Existence of the inverse: For each element g ∈ G there exist another
element, called inverse of g : g−1 ∈ G such that g · g−1 = g−1 · g = I.

Definition A.2 (Matrix Group). A group (G, ·) in which:

� the set is a subset of Rn×n,

� the group operation is the matrix multiplication,

� the inverse is the matrix inversion,

is called Matrix Group.

Definition A.3 (Matrix Lie Group, [Hall, 2003] Definition 1.4). Given a
Matrix Group G, and if the following property holds for G:

� if Am is any sequence of matrices in G, and Am converges to some
matrix A, then either A is in G or A is not invertible,

then G is Matrix Lie Group.

Remark A.1. A group in which the group elements are matrices, but in
which the group operation is not the matrix multiplication is not a matrix
group. Similarly, a Lie group in which the group elements are matrices but
in which the group operation is not the matrix multiplication is not a matrix
Lie group.

Definition A.4 (Matrix Exponential). Given a Matrix X ∈ Rn×n, the
exponential pf the matrix X, indicated with exp (X), is defined as:

exp (X) =
∞∑
i=0

Xi

i!
. (A.1)

Definition A.5 (Vector Derivative of Scalar-Valued Function). Given a
scalar-valued vector function l(·) : Rn 7→ R, the vector derivative of l(u),
indicated with ∂l

∂u ∈ Rn, is defined as:(
∂l

∂u

)
i

=
∂l

∂ui
. (A.2)

Definition A.6 (Vector Derivative of Vector-Valued Function). Given a
vector-valued vector function f(·) : Rn 7→ Rm, the vector derivative of f(u),
indicated with ∂f

∂u ∈ Rn×m, is defined as:(
∂f

∂u

)
ij

=
∂fj
∂ui

. (A.3)
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If the argument u depends itself a scalar variable t ∈ R, the total deriva-
tive of the composite function f(u(t)) can be written as:

d

dt
(f) =

(
∂f

∂u

)T du

dt
. (A.4)

Definition A.7 (Matrix Derivative). Given a function scalar-valued matrix
function l(·) : Rn×n 7→ R, the matrix derivative of l(X), indicated with
∂l
∂X ∈ Rn×n, is defined as: (

∂l

∂X

)
ij

=
∂l

∂Xij
. (A.5)

Definition A.8 (Tangent Space of a Matrix Lie Group). Given a matrix
Lie group element g ∈ G, the tangent space TgG is the space of all matrices
X ∈ Rn×n such that there exist a smooth function γ(t) : R 7→ Rn×n for
which:

X =

(
dγ(t)

dt

∣∣∣∣
t=T

, γ(T ) = G (A.6)

Definition A.9 (Dual of Tangent space). Let TgG be the tangent space of
a matrix Lie group G in its point g. Its dual space T ∗

gG is defined as the
space of all the linear functions from TgG to R:

T ∗
gG = {f(·) : TgG 7→ R | ∀X,Y ∈ TgG f(X + Y ) = fX + fY }. (A.7)

Remark A.2. If a G ⊆ Rn×n, then a generic element of T ∗
gG can be written

as a matrix f ∈ Rn×n, and its application to an element X ∈ TgG can be
expressed as

⟨f,X⟩ =
∑
ij

fijXij . (A.8)

Definition A.10 (Lie algebra of a matrix Lie group, [Hall, 2003] Definition
3.18). Let G be a Matrix Lie Group. The Lie Algebra g of G is the set of
all matrices X ∈ Rn×n such that exp (Xt) is in G for all t ∈ R , i.e. :

g := {X ∈ Rn×n | exp (Xt) ∈ G ∀t ∈ R}. (A.9)

Furthermore, for every X and Y that belong to g, we have that XY −Y X
belongs to g. We then define the Lie Brackets [·, ·] : g× g 7→ g as:

[X,Y ] = XY − Y X. (A.10)
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Definition A.11 (Dual space of the Lie algebra). Let g be a Lie algebra
of a Matrix Lie Group. Its dual space g∗ is defined as the space of all the
linear functions from g to R:

g∗ = {f(·) : g 7→ R | ∀X,Y ∈ g f(X + Y ) = fX + fY }. (A.11)

Lemma A.1 (Lie algebra as the Tangent Space of the Identity). Let g be a
Lie algebra of a matrix Lie group G. We have that (as a set) the Lie algebra
coincides with the Tangent space of G at the identity.

g = T1nG. (A.12)

Furthermore for the dual space g∗ we have that:

g∗ = T ∗
1nG. (A.13)

Lemma A.2 (Trivialization of Tangent Space). Let δg ∈ TgG be an element
of the tangent space of the matrix Lie group G. Then g−1δg belongs to g
and is called left-trivialization of δg. Furthermore δgg−1 belongs to g and
is called right-trivialization of δg.

Lemma A.3 (Trivialization of the dual Tangent Space). Let f ∈ T ∗
gG be

an element of the dual tangent space of the matrix Lie group G. Then the
left-trivialization of f , indicated with g−1f ∈ g∗ is defined as:〈

g−1f, ξ
〉
= ⟨f, gξ⟩ (A.14)

with ξ ∈ g.
Similarly the right-trivialization of f ∈ T ∗

gG, indicated with fg−1 ∈ g∗

is defined as: 〈
fg−1, ξ

〉
= ⟨f, ξg⟩ (A.15)

with ξ ∈ g.

Remark A.3. Note that while f ∈ T ∗
gG can be represented by a n×n matrix

as discussed in Remark A.2, the left trivialization g−1f is not the matrix
multiplication of g−1 ∈ Rn×n times the matrix representing f .

Definition A.12 (Adjoint action of a matrix Lie group on its Lie algebra,
[Hall, 2003] Definition 3.32). Let G be a matrix Lie group, with g its Lie
algebra. Then for each A ∈ G, the Adjoint Map of the group AdA : g 7→ g
is defined as:

AdAX = AXA−1. (A.16)
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Definition A.13 (Adjoint action of a matrix Lie group on the dual space
of its Lie algebra). Let G be a matrix Lie group, with g its Lie algebra and
g∗ its dual space. Then for each A ∈ G, the Adjoint action of the group on
the dual space AdA : g 7→ g is defined as:

⟨Ad∗A f,X⟩ = ⟨f,AdA Y ⟩ . (A.17)

Definition A.14 (Adjoint action of a Lie algebra on itself, [Hall, 2003]
Definition 3.7). Let g be a Lie algebra of a matrix Lie group G. Then for
each X ∈ g, the Adjoint Map of the algebra adX : g 7→ g is defined as:

adX Y = [X,Y ]. (A.18)

Definition A.15 (Adjoint action of a Lie algebra on its dual space). Let g
be a Lie algebra of a matrix Lie group G, and let g∗ be its dual space. Then
given X,Y ∈ g and f ∈ g∗, the Adjoint action of the algebra on the dual
space ad∗X : g∗ 7→ g∗ is defined as:

⟨ad∗X f, Y ⟩ = ⟨f, adX Y ⟩ . (A.19)

A.1.1 Matrix Lie Group Examples

Rotation matrices

The set SO(3) is the set of R3×3 orthogonal matrices with determinant equal
to one, namely

SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1 }. (A.20)

When endowed with matrix multiplication, SO(3) becomes a Lie group, the
Special Orthogonal group of dimension three.

The Lie Algebra of SO(3) is so(3), i.e. the set of skew-symmetric matrices
of dimension 3:

so(3) := {S ∈ R3×3 | ST = −S }. (A.21)

In particular any element S ∈ so(3) has the following structure:

S =

 0 sz −sy
−sz 0 sx
sy −sx 0

 . (A.22)
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Consequently, an alternative representation for S is the s ∈ R3, defined as:

s = S∨ =

sxsy
sz

 . (A.23)

We will call s the representation of the element S ∈ so(3) as a vector in R3,
with ∨ the operator to map an element of so(3) to the corresponding vector
in R3. The representation of so(3) as R3 simplifies the representation of the
covector in so∗(3) and all the adjoint actions presented in Definitions A.12,
A.13, A.14 and A.15. In particular, if the element of so(3) is represented as a
vector, then also the element of so∗(3) can be represented as 3D vector, with
the application of the element so∗(3) to the element v∧ ∈ so(3) is simply the
vector dot product:

⟨f, v⟩ = fT v. (A.24)

Furthermore, all the adjoint actions on so(3) and so∗(3) can be repre-
sented as 3× 3 matrices. In particular for R ∈ SO(3), v, u ∈ R3 ≈ so(3) and
we have:

AdR = R, (A.25)

Ad∗R = RT , (A.26)

adv = v∧, (A.27)

ad∗v =
(
v∧
)T

= −v∧. (A.28)

Homogeneous transformation matrices

The set SE(3) is defined as

SE(3) :=
{[ R p

01×3 1

]
∈ R4×4 | R ∈ SO(3), p ∈ R3

}
. (A.29)

When endowed with matrix multiplication, it becomes the Special Euclidean
group of dimension three, a Lie group that can be used to represent rigid
transformations and their composition in the 3D space.

The Lie Algebra of SE(3) is se(3), the set of the matrices defined as
following:

se(3) :=
{[ Ω v

01×3 0

]
∈ R4×4 | Ω ∈ so(3), v ∈ R3

}
. (A.30)
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As in the case of so(3), we can also identify se(3) with R6 using the
following mapping:

v =

([
Ω v

01×3 0

])∨
=

[
v
Ω∨

]
. (A.31)

Using this 6D vector representation, the adjoint action assume the form
of 4× 4 real matrices, in particular:

AdH =

[
R o∧R

03×3 R

]
= X, (A.32)

Ad∗H = XT =

[
RT 03×3

−RT o∧R RT

]
, (A.33)

adv =

[
ω∨ v∨

03×3 ω∨

]
= v×, (A.34)

ad∗v = (v×)T =

[
−ω∨ 03×3

−v∨ −ω∨

]
(A.35)

where the 6D cross product v× is defined in (2.37).

Real Vector Spaces endowed with vector sum

The vector space or real vectors of dimension n can be seen as a Matrix Lie
Group. In particular the vector u ∈ Rm can be mapped to a specific group
of matrices in R(n+1)×(n+1): [

1n v
01×n 1

]
(A.36)

It is trivial to verify that a group multiplication in this space is equivalent
to a sum in the vector space:[

1n v
01×n 1

] [
1n u
01×n 1

]
=

[
1n v + u
01×n 1

]
(A.37)

Thanks to such a mapping, we can consider the real vector space Rn to be
equivalent to a matrix Lie group.

The Lie Algebra of such a matrix Lie group is the set of matrices of
format: [

0n×n u
01×n 0

]
. (A.38)

A convenient vector representation of such a matrix is obviously the u vector
itself.
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Using this vector representation, the adjoint actions are defined as ma-
trices in Rn×n:

Adv = 1n, (A.39)

Ad∗v = 1n, (A.40)

adu = 0n×n, (A.41)

ad∗u = 0n×n. (A.42)

A.2 Multibody Dynamics Notation and its con-
nection to Lie Groups

In this section, the connection between the notation introduced in Chapter 2
and the concepts of matrix Lie groups reviewed in this appendix.

A.2.1 Frame Pose and 6D Velocity

Given two frames A and B, their relative pose can be represented by the
homogeneous transform AHB, that is an element of the matrix Lie group
SE(3). Given a trajectory of the rigid body AHB(t) : R 7→ SE(3), the
time derivative AḢB(t) belongs to the tangent space TAHB

SE(3). The left-
trivialized velocity Bv∧A,B and the right-trivialized Av∧A,B both belong to the
Lie algebra of SE(3), i.e. se(3).

A.2.2 Cross Product on R6

In the language of Lie groups, the R6 cross product v× introduced in (2.37)
is nothing else that the matrix representation of the adjoint action of R6

on itself, indicated with ad, when thinking at R6 as the Lie algebra induced
by the Lie algebra homeomorphism (2.7) between R6 and se(3). Defining
g = AHB ∈ SE(3), (2.36) is then usually written as (cf. [Marsden and Ratiu,
1999, Chapter 9, equation (9.3.4)])

d

dt
Adg = Adg adg−1ġ, (A.43)

where Adg = AXB and adg−1ġ = AvA,B×, with g−1ġ = BvA,B. This notation
is used in the robotic literature in, e.g., [Garofalo et al., 2013] and [Park et al.,
1995]. This connection with Lie group theory allows to obtain immediately
useful algebraic equalities such as, e.g., the identity (v × w)∧ = v∧w∧ −
w∧v∧ =: [v∧,w∧], valid for arbitrary vectors v and w ∈ R6, that derives
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from the fact that the adjoint operator ad is nothing else than the matrix
commutator [·, ·] when using the matrix representations (v∧ and w∧) of the
Lie algebra elements.

A.2.3 The dual cross product on R6 (×̄∗)

In the language of matrix Lie groups, the dual space of se(3) (i.e., the space
of linear applications from se(3) to R) is indicated with se(3)∗ and is the
space where 6D forces belong (as opposed to se(3) where 6D velocity belong).
In terms of Lie group theory, the 6D force coordinate trasformation AX

B is
written

AX
B = Ad∗g−1 (A.44)

with g = AHB ∈ SE(3). Recall that Adg = AXB and Adg−1 = BXA. Then,
posing ξ∧ = Bv∧A,B ∈ se(3), one sees that

BvA,B×̄∗ = − ad∗ξ . (A.45)

Once again, note how the symbol ×̄∗ appearing in (2.50) has been explicitly
chosen to remind the fact that (2.50) is obtained from the product (×) given
in (2.37), by computing its adjoint (∗) and changing its sign (−). Finally,
(2.49) is simply

d

dt
Ad∗g−1 = −Ad∗g−1 ad

∗
ξ (A.46)

for ġ = gξ, with g = AHB and ξ = Bv∧A,B.

A.3 Euler-Poincaré Equations and Rigid Body Dy-
namics

The Euler-Poincaré Equations are the generalization of the Euler-Lagrange
equations to a system whose configuration space is a Lie Group.

A.3.1 Euler-Poincaré Equations

Theorem A.1. Let G be a Matrix Lie group and let L : TG 7→ R be a
Lagrangian function. Let l : G × g 7→ R be the left-trivialization of the
Lagrangian L, that is defined l(g, ξ) := L(g, gξ). Then, the variational prin-
ciple

δ

∫ T

0
L(g, ġ)dt = 0 (A.47)
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with variations δq with fixed end points is equivalent to the Euler-Poincarè
equations

d

dt

∂l

∂ξ
= ad∗ξ

∂l

∂ξ
+ g−1 ∂l

∂g
(A.48)

with reconstruction equation ġ = gξ and where g−1 ∂l
∂g is the left-trivialization

of ∂l
∂g , as defined in Lemma A.3.

Proof. To prove the theorem we first transform (A.47) on a variational equa-
tion expressed with respect to l. We express the variation δξ as a function

of variations δg = dg
dϵ

∣∣∣
ϵ=0

and δġ = dġ
dϵ

∣∣∣
ϵ=0

, obtaining

δξ =
d

dϵ

(
g−1ġ

)∣∣∣∣
ϵ=0

= −
(
g−1δgg−1

)
ġ + g−1δġ

= −ηξ + g−1δġ

Computing the time derivative of η = g−1δg, recalling that d
dtδg = δġ, we

get

η̇ =
d

dt

(
g−1δg

)
= −

(
g−1ġg−1

)
δg + g−1δġ

= −ξη + g−1δġ.

We therefore obtain, combining the two equations above, that

δξ = ξη − ηξ + η̇ = adξ η + η̇. (A.49)

The variational principle (A.47) is equivalent to

δ

∫ T

0
l(g, ξ)dt = 0

with variations of the form (A.49) fixed at the end points. Expliciting, the
above reads ∫ T

0

(
∂l

∂g
· δg + ∂l

∂ξ
· δξ
)
dt =∫ T

0

〈
∂l

∂g
, gη

〉
+

〈
∂l

∂ξ
, adξ η + η̇

〉
dt =∫ T

0

〈
g−1 ∂l

∂g
, η

〉
+

〈
ad∗ξ

∂l

∂ξ
, η

〉
−
〈
d

dt

∂l

∂ξ
, η

〉
dt =∫ T

0

〈
g−1 ∂l

δg
+ ad∗ξ

∂l

∂ξ
− d

dt

∂l

∂ξ
, η

〉
dt = 0, (A.50)
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where we used integration by parts to go from the second to the third step,
recalling that η is a variation with fixed end points. Given that δg (and
hence η) is arbitrary, we finally get

d

dt

∂l

∂ξ
− ad∗ξ

∂l

∂ξ
− g−1 ∂l

∂g
= 0 (A.51)

with ġ = gξ.

A.3.2 Rigid Body Dynamics

For obtaining the Rigid Body equation of motions we can write the Euler-
Poincaré equations with g = H, ξ = v, and the left-trivialized lagrangian is
given in Proposition 2.1.

Expliciting the different terms of the Euler-Poincaré equations, we have:

− ad∗v = v×∗, (A.52a)
∂l

∂v
= Mv, (A.52b)

d

dt

∂l

∂v
= Mv̇. (A.52c)

The first equivalence is consequence from the definition of v×̄∗, while the
other two come from the fact that M is constant and hence independent
from v.

For the term that depends on the potential energy−H−1 ∂l
∂H = −H−1 ∂U

∂H ,

from the definition of left-trivialization in Lemma A.3 and given η =

[
ηl
ηa

]
∈

R6, η∧ ∈ se(3) we have: 〈
−H−1∂U(H)

∂H
, η∧
〉

=

=

〈
−∂U(H)

∂H
,Hη

〉
=

= −U(Hη∧) =

= m

[
g
0

]T ([
Rη∧a Rηl
03×1 0

] [
c
1

])
=

= m

[
g
0

]T ([
R −Rc∧

01×3 01×3

])[
ηl
ηa

]
=

= (RT g)T
[
m13 −mc∧

]
η.

From the last equation, we can write −H−1 ∂l
∂H in vector form as:
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−H−1 ∂l

∂H
=

[
m13
mc∧

]
RT g = M

[
RT g
03×1

]
. (A.53)

Combining equations and (A.53), we obtain equation.

A.4 Hamel Equations and Multi Body Dynamics

A.4.1 Hamel Equations

If the configuration space of a mechanical system is a combination of a Lie
Group and of a vector space, then the Euler-Poincaré can be specialized in
the Hamel equations.

Theorem A.2. Let Q be a Matrix Lie group defined as the direct product of
another Matrix Lie Group G and of a real vector space Rn, i.e. Q = G×Rn.
Furthermore let L : G× Rn × TG× Rn 7→ R be a Lagrangian function. Let
l : G × Rn × g × Rn 7→ R the left-trivialization (relative just to G) of the
Lagrangian L, defined as l(g, s, ξ, ṡ) := L(g, s, gξ, ṡ). Then, the variational
principle

δ

∫ T

0
L(g, s, ġ, ṡ)dt = 0 (A.54)

with variations (δg, δs) with fixed end points is equivalent to the Hamel equa-
tions

d

dt

∂l

∂ξ
− ad∗ξ

∂l

∂ξ
− g−1 ∂l

∂g
= 0 (A.55a)

d

dt

∂l

∂ṡ
− ∂l

∂s
= 0 (A.55b)

with reconstruction equation ġ = gξ∧ and where g−1 ∂l
∂g is the left-trivialization

of ∂l
∂g , as defined in Lemma A.3.

Proof. The variational principle (A.54) is equivalent to

δ

∫ T

0
l(g, s, ξ, ṡ)dt = 0

with variations of the base part of the form (A.49) fixed at the end points.
Expliciting, the above reads:∫ T

0

(
∂l

∂g
· δg + ∂l

∂ξ
· δξ + ∂l

∂s
· δs+ ∂l

∂ṡ
· δṡ
)
dt.
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It is possible to separate the first two term from the last two terms.
Proceeding for the first two terms as in (A.50), and similarly for the last
two terms we can (A.54) as:∫ T

0

〈
g−1 ∂l

δg
+ ad∗ξ

∂l

∂ξ
− d

dt

∂l

∂ξ
, η

〉
+

〈
∂l

δs
− d

dt

∂l

∂ṡ
, δs

〉
dt = 0.

Given that η and δs are arbitrary, we get that both (A.55a) and (A.55b)
need to be satisfied.

A.4.2 Multi Body Dynamics

The Hamel equations (A.55) can be written for multibody dynamics with
g = H, ξ = v and using the lagrangian defined in (3.48). First, we can
combine the first terms of the base and shape equations in a single term:

[
d
dt

∂l
∂v

d
dt

∂l
∂ṡ

]
=

d

dt

∂l

∂ν
=

=
d

dt

∂ (M(s)ν)

∂ν
=

=M(s)ν̇ +

(
d

dt
M(s)

)
ν.

The second term and third terms of the base equation of motion, recalling
that − ad∗v = v×̄∗ and the equivalent derivations in Subsection A.3.2 are:

− ad∗v
∂l

∂v
= v×̄∗ (M(s)v + F (s)ṡ) , (A.56)

−H−1 ∂l

∂H
= −

[
m13

mc∧(s)

]
RT g = −M(s)

[
RT g
03×1

]
. (A.57)

The second term of the shape Hamel equations is given as:

− ∂l

∂s
= − ∂

∂s

(
1

2
νTM(s)ν

)
− ∂c

∂s
RT g. (A.58)

Combining the different terms, we obtain:

M(s)ν̇ +

(
d

dt
M(s)

)
ν −

[
v×̄∗ (M(s)v + F (s)ṡ)

0n×1

]
+ (A.59)

−
[

06×1
∂
∂s

(
1
2ν

TM(s)ν
)]−

 m13
mc∧(s)

∂c
∂s

RT g = 0(n+6)×1 (A.60)
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The first term is the only one that depends on the acceleration of the sys-
tem, while the last one is the only one that depends on the gravitation
acceleration.

From straightforward algebraic manipulations we then have that:[ (
d
dtM(s)

)
ν

∂
∂s

(
1
2ν

TM(s)ν
)] =∑

L

JT
L

[
(vL×̄∗

LML + LMLvL×) JL + LMLJ̇L

]
,(A.61) m13

mc∧(s)
∂c
∂s

RT g =M(s)

[
RT g
03+nJ

]
. (A.62)
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